direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D4.F5, Dic5.17C24, C5⋊C8.1C23, C10⋊1(C8○D4), D5⋊C8⋊6C22, D4.11(C2×F5), (C2×D4).13F5, C4.F5⋊7C22, C2.8(C23×F5), D4⋊2D5.2C4, (D4×C10).12C4, C10.7(C23×C4), C4.25(C22×F5), C23.30(C2×F5), C20.25(C22×C4), (C4×D5).47C23, D10.1(C22×C4), C22.F5⋊3C22, Dic10.11(C2×C4), (C2×Dic10).15C4, C22.1(C22×F5), Dic5.1(C22×C4), D4⋊2D5.15C22, (C2×Dic5).177C23, (C22×Dic5).191C22, C5⋊1(C2×C8○D4), (C2×D5⋊C8)⋊5C2, (C22×C5⋊C8)⋊9C2, (C2×C4.F5)⋊6C2, (C2×C5⋊C8)⋊11C22, C5⋊D4.1(C2×C4), (C2×C4).91(C2×F5), (C2×C20).70(C2×C4), (C5×D4).11(C2×C4), (C4×D5).31(C2×C4), (C2×C5⋊D4).10C4, (C2×C10).1(C22×C4), (C2×C4×D5).214C22, (C2×C22.F5)⋊10C2, (C2×D4⋊2D5).17C2, (C22×C10).31(C2×C4), (C2×Dic5).80(C2×C4), (C22×D5).60(C2×C4), SmallGroup(320,1593)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — C2×C5⋊C8 — C22×C5⋊C8 — C2×D4.F5 |
Generators and relations for C2×D4.F5
G = < a,b,c,d,e | a2=b4=c2=d5=1, e4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 730 in 266 conjugacy classes, 140 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D5, C10, C10, C10, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C22×C8, C2×M4(2), C8○D4, C2×C4○D4, C5⋊C8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C2×C8○D4, D5⋊C8, C4.F5, C2×C5⋊C8, C2×C5⋊C8, C22.F5, C2×Dic10, C2×C4×D5, D4⋊2D5, C22×Dic5, C2×C5⋊D4, D4×C10, C2×D5⋊C8, C2×C4.F5, D4.F5, C22×C5⋊C8, C2×C22.F5, C2×D4⋊2D5, C2×D4.F5
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, F5, C8○D4, C23×C4, C2×F5, C2×C8○D4, C22×F5, D4.F5, C23×F5, C2×D4.F5
(1 159)(2 160)(3 153)(4 154)(5 155)(6 156)(7 157)(8 158)(9 71)(10 72)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 118)(26 119)(27 120)(28 113)(29 114)(30 115)(31 116)(32 117)(33 128)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 102)(42 103)(43 104)(44 97)(45 98)(46 99)(47 100)(48 101)(49 106)(50 107)(51 108)(52 109)(53 110)(54 111)(55 112)(56 105)(73 129)(74 130)(75 131)(76 132)(77 133)(78 134)(79 135)(80 136)(81 142)(82 143)(83 144)(84 137)(85 138)(86 139)(87 140)(88 141)(89 146)(90 147)(91 148)(92 149)(93 150)(94 151)(95 152)(96 145)
(1 7 5 3)(2 8 6 4)(9 92 13 96)(10 93 14 89)(11 94 15 90)(12 95 16 91)(17 79 21 75)(18 80 22 76)(19 73 23 77)(20 74 24 78)(25 104 29 100)(26 97 30 101)(27 98 31 102)(28 99 32 103)(33 143 37 139)(34 144 38 140)(35 137 39 141)(36 138 40 142)(41 120 45 116)(42 113 46 117)(43 114 47 118)(44 115 48 119)(49 51 53 55)(50 52 54 56)(57 135 61 131)(58 136 62 132)(59 129 63 133)(60 130 64 134)(65 151 69 147)(66 152 70 148)(67 145 71 149)(68 146 72 150)(81 123 85 127)(82 124 86 128)(83 125 87 121)(84 126 88 122)(105 107 109 111)(106 108 110 112)(153 159 157 155)(154 160 158 156)
(1 106)(2 107)(3 108)(4 109)(5 110)(6 111)(7 112)(8 105)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 124)(18 125)(19 126)(20 127)(21 128)(22 121)(23 122)(24 123)(25 151)(26 152)(27 145)(28 146)(29 147)(30 148)(31 149)(32 150)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)(49 159)(50 160)(51 153)(52 154)(53 155)(54 156)(55 157)(56 158)(65 104)(66 97)(67 98)(68 99)(69 100)(70 101)(71 102)(72 103)(73 84)(74 85)(75 86)(76 87)(77 88)(78 81)(79 82)(80 83)(89 113)(90 114)(91 115)(92 116)(93 117)(94 118)(95 119)(96 120)(129 137)(130 138)(131 139)(132 140)(133 141)(134 142)(135 143)(136 144)
(1 97 61 133 32)(2 134 98 25 62)(3 26 135 63 99)(4 64 27 100 136)(5 101 57 129 28)(6 130 102 29 58)(7 30 131 59 103)(8 60 31 104 132)(9 90 125 54 85)(10 55 91 86 126)(11 87 56 127 92)(12 128 88 93 49)(13 94 121 50 81)(14 51 95 82 122)(15 83 52 123 96)(16 124 84 89 53)(17 73 113 155 48)(18 156 74 41 114)(19 42 157 115 75)(20 116 43 76 158)(21 77 117 159 44)(22 160 78 45 118)(23 46 153 119 79)(24 120 47 80 154)(33 141 150 106 66)(34 107 142 67 151)(35 68 108 152 143)(36 145 69 144 109)(37 137 146 110 70)(38 111 138 71 147)(39 72 112 148 139)(40 149 65 140 105)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,159)(2,160)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,71)(10,72)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,118)(26,119)(27,120)(28,113)(29,114)(30,115)(31,116)(32,117)(33,128)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,102)(42,103)(43,104)(44,97)(45,98)(46,99)(47,100)(48,101)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,105)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,142)(82,143)(83,144)(84,137)(85,138)(86,139)(87,140)(88,141)(89,146)(90,147)(91,148)(92,149)(93,150)(94,151)(95,152)(96,145), (1,7,5,3)(2,8,6,4)(9,92,13,96)(10,93,14,89)(11,94,15,90)(12,95,16,91)(17,79,21,75)(18,80,22,76)(19,73,23,77)(20,74,24,78)(25,104,29,100)(26,97,30,101)(27,98,31,102)(28,99,32,103)(33,143,37,139)(34,144,38,140)(35,137,39,141)(36,138,40,142)(41,120,45,116)(42,113,46,117)(43,114,47,118)(44,115,48,119)(49,51,53,55)(50,52,54,56)(57,135,61,131)(58,136,62,132)(59,129,63,133)(60,130,64,134)(65,151,69,147)(66,152,70,148)(67,145,71,149)(68,146,72,150)(81,123,85,127)(82,124,86,128)(83,125,87,121)(84,126,88,122)(105,107,109,111)(106,108,110,112)(153,159,157,155)(154,160,158,156), (1,106)(2,107)(3,108)(4,109)(5,110)(6,111)(7,112)(8,105)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,124)(18,125)(19,126)(20,127)(21,128)(22,121)(23,122)(24,123)(25,151)(26,152)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(49,159)(50,160)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(65,104)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,84)(74,85)(75,86)(76,87)(77,88)(78,81)(79,82)(80,83)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144), (1,97,61,133,32)(2,134,98,25,62)(3,26,135,63,99)(4,64,27,100,136)(5,101,57,129,28)(6,130,102,29,58)(7,30,131,59,103)(8,60,31,104,132)(9,90,125,54,85)(10,55,91,86,126)(11,87,56,127,92)(12,128,88,93,49)(13,94,121,50,81)(14,51,95,82,122)(15,83,52,123,96)(16,124,84,89,53)(17,73,113,155,48)(18,156,74,41,114)(19,42,157,115,75)(20,116,43,76,158)(21,77,117,159,44)(22,160,78,45,118)(23,46,153,119,79)(24,120,47,80,154)(33,141,150,106,66)(34,107,142,67,151)(35,68,108,152,143)(36,145,69,144,109)(37,137,146,110,70)(38,111,138,71,147)(39,72,112,148,139)(40,149,65,140,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,159)(2,160)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,71)(10,72)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,118)(26,119)(27,120)(28,113)(29,114)(30,115)(31,116)(32,117)(33,128)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,102)(42,103)(43,104)(44,97)(45,98)(46,99)(47,100)(48,101)(49,106)(50,107)(51,108)(52,109)(53,110)(54,111)(55,112)(56,105)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,142)(82,143)(83,144)(84,137)(85,138)(86,139)(87,140)(88,141)(89,146)(90,147)(91,148)(92,149)(93,150)(94,151)(95,152)(96,145), (1,7,5,3)(2,8,6,4)(9,92,13,96)(10,93,14,89)(11,94,15,90)(12,95,16,91)(17,79,21,75)(18,80,22,76)(19,73,23,77)(20,74,24,78)(25,104,29,100)(26,97,30,101)(27,98,31,102)(28,99,32,103)(33,143,37,139)(34,144,38,140)(35,137,39,141)(36,138,40,142)(41,120,45,116)(42,113,46,117)(43,114,47,118)(44,115,48,119)(49,51,53,55)(50,52,54,56)(57,135,61,131)(58,136,62,132)(59,129,63,133)(60,130,64,134)(65,151,69,147)(66,152,70,148)(67,145,71,149)(68,146,72,150)(81,123,85,127)(82,124,86,128)(83,125,87,121)(84,126,88,122)(105,107,109,111)(106,108,110,112)(153,159,157,155)(154,160,158,156), (1,106)(2,107)(3,108)(4,109)(5,110)(6,111)(7,112)(8,105)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,124)(18,125)(19,126)(20,127)(21,128)(22,121)(23,122)(24,123)(25,151)(26,152)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(49,159)(50,160)(51,153)(52,154)(53,155)(54,156)(55,157)(56,158)(65,104)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,84)(74,85)(75,86)(76,87)(77,88)(78,81)(79,82)(80,83)(89,113)(90,114)(91,115)(92,116)(93,117)(94,118)(95,119)(96,120)(129,137)(130,138)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144), (1,97,61,133,32)(2,134,98,25,62)(3,26,135,63,99)(4,64,27,100,136)(5,101,57,129,28)(6,130,102,29,58)(7,30,131,59,103)(8,60,31,104,132)(9,90,125,54,85)(10,55,91,86,126)(11,87,56,127,92)(12,128,88,93,49)(13,94,121,50,81)(14,51,95,82,122)(15,83,52,123,96)(16,124,84,89,53)(17,73,113,155,48)(18,156,74,41,114)(19,42,157,115,75)(20,116,43,76,158)(21,77,117,159,44)(22,160,78,45,118)(23,46,153,119,79)(24,120,47,80,154)(33,141,150,106,66)(34,107,142,67,151)(35,68,108,152,143)(36,145,69,144,109)(37,137,146,110,70)(38,111,138,71,147)(39,72,112,148,139)(40,149,65,140,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,159),(2,160),(3,153),(4,154),(5,155),(6,156),(7,157),(8,158),(9,71),(10,72),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,118),(26,119),(27,120),(28,113),(29,114),(30,115),(31,116),(32,117),(33,128),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,102),(42,103),(43,104),(44,97),(45,98),(46,99),(47,100),(48,101),(49,106),(50,107),(51,108),(52,109),(53,110),(54,111),(55,112),(56,105),(73,129),(74,130),(75,131),(76,132),(77,133),(78,134),(79,135),(80,136),(81,142),(82,143),(83,144),(84,137),(85,138),(86,139),(87,140),(88,141),(89,146),(90,147),(91,148),(92,149),(93,150),(94,151),(95,152),(96,145)], [(1,7,5,3),(2,8,6,4),(9,92,13,96),(10,93,14,89),(11,94,15,90),(12,95,16,91),(17,79,21,75),(18,80,22,76),(19,73,23,77),(20,74,24,78),(25,104,29,100),(26,97,30,101),(27,98,31,102),(28,99,32,103),(33,143,37,139),(34,144,38,140),(35,137,39,141),(36,138,40,142),(41,120,45,116),(42,113,46,117),(43,114,47,118),(44,115,48,119),(49,51,53,55),(50,52,54,56),(57,135,61,131),(58,136,62,132),(59,129,63,133),(60,130,64,134),(65,151,69,147),(66,152,70,148),(67,145,71,149),(68,146,72,150),(81,123,85,127),(82,124,86,128),(83,125,87,121),(84,126,88,122),(105,107,109,111),(106,108,110,112),(153,159,157,155),(154,160,158,156)], [(1,106),(2,107),(3,108),(4,109),(5,110),(6,111),(7,112),(8,105),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,124),(18,125),(19,126),(20,127),(21,128),(22,121),(23,122),(24,123),(25,151),(26,152),(27,145),(28,146),(29,147),(30,148),(31,149),(32,150),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60),(49,159),(50,160),(51,153),(52,154),(53,155),(54,156),(55,157),(56,158),(65,104),(66,97),(67,98),(68,99),(69,100),(70,101),(71,102),(72,103),(73,84),(74,85),(75,86),(76,87),(77,88),(78,81),(79,82),(80,83),(89,113),(90,114),(91,115),(92,116),(93,117),(94,118),(95,119),(96,120),(129,137),(130,138),(131,139),(132,140),(133,141),(134,142),(135,143),(136,144)], [(1,97,61,133,32),(2,134,98,25,62),(3,26,135,63,99),(4,64,27,100,136),(5,101,57,129,28),(6,130,102,29,58),(7,30,131,59,103),(8,60,31,104,132),(9,90,125,54,85),(10,55,91,86,126),(11,87,56,127,92),(12,128,88,93,49),(13,94,121,50,81),(14,51,95,82,122),(15,83,52,123,96),(16,124,84,89,53),(17,73,113,155,48),(18,156,74,41,114),(19,42,157,115,75),(20,116,43,76,158),(21,77,117,159,44),(22,160,78,45,118),(23,46,153,119,79),(24,120,47,80,154),(33,141,150,106,66),(34,107,142,67,151),(35,68,108,152,143),(36,145,69,144,109),(37,137,146,110,70),(38,111,138,71,147),(39,72,112,148,139),(40,149,65,140,105)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5 | 8A | ··· | 8H | 8I | ··· | 8T | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 20A | 20B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 4 | 5 | ··· | 5 | 10 | ··· | 10 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C8○D4 | F5 | C2×F5 | C2×F5 | C2×F5 | D4.F5 |
kernel | C2×D4.F5 | C2×D5⋊C8 | C2×C4.F5 | D4.F5 | C22×C5⋊C8 | C2×C22.F5 | C2×D4⋊2D5 | C2×Dic10 | D4⋊2D5 | C2×C5⋊D4 | D4×C10 | C10 | C2×D4 | C2×C4 | D4 | C23 | C2 |
# reps | 1 | 1 | 1 | 8 | 2 | 2 | 1 | 2 | 8 | 4 | 2 | 8 | 1 | 1 | 4 | 2 | 2 |
Matrix representation of C2×D4.F5 ►in GL8(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 40 | 40 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 38 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 38 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 8 | 8 |
0 | 0 | 0 | 0 | 8 | 8 | 0 | 36 |
0 | 0 | 0 | 0 | 33 | 28 | 33 | 0 |
0 | 0 | 0 | 0 | 5 | 13 | 13 | 5 |
G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,32,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,9,9,0,0,0,0,0,0,23,32,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0],[27,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,38,0,0,0,0,0,0,0,0,38,0,0,0,0,0,0,0,0,36,8,33,5,0,0,0,0,0,8,28,13,0,0,0,0,8,0,33,13,0,0,0,0,8,36,0,5] >;
C2×D4.F5 in GAP, Magma, Sage, TeX
C_2\times D_4.F_5
% in TeX
G:=Group("C2xD4.F5");
// GroupNames label
G:=SmallGroup(320,1593);
// by ID
G=gap.SmallGroup(320,1593);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,297,102,6278,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations