Extensions 1→N→G→Q→1 with N=C10 and Q=D16

Direct product G=N×Q with N=C10 and Q=D16
dρLabelID
C10×D16160C10xD16320,1006

Semidirect products G=N:Q with N=C10 and Q=D16
extensionφ:Q→Aut NdρLabelID
C101D16 = C2×D80φ: D16/C16C2 ⊆ Aut C10160C10:1D16320,529
C102D16 = C2×C5⋊D16φ: D16/D8C2 ⊆ Aut C10160C10:2D16320,773

Non-split extensions G=N.Q with N=C10 and Q=D16
extensionφ:Q→Aut NdρLabelID
C10.1D16 = D160φ: D16/C16C2 ⊆ Aut C101602+C10.1D16320,6
C10.2D16 = C160⋊C2φ: D16/C16C2 ⊆ Aut C101602C10.2D16320,7
C10.3D16 = Dic80φ: D16/C16C2 ⊆ Aut C103202-C10.3D16320,8
C10.4D16 = C8013C4φ: D16/C16C2 ⊆ Aut C10320C10.4D16320,62
C10.5D16 = D407C4φ: D16/C16C2 ⊆ Aut C10160C10.5D16320,67
C10.6D16 = C40.2Q8φ: D16/D8C2 ⊆ Aut C10320C10.6D16320,47
C10.7D16 = C40.5D4φ: D16/D8C2 ⊆ Aut C10160C10.7D16320,49
C10.8D16 = C5⋊D32φ: D16/D8C2 ⊆ Aut C101604+C10.8D16320,77
C10.9D16 = D16.D5φ: D16/D8C2 ⊆ Aut C101604-C10.9D16320,78
C10.10D16 = C5⋊SD64φ: D16/D8C2 ⊆ Aut C101604+C10.10D16320,79
C10.11D16 = C5⋊Q64φ: D16/D8C2 ⊆ Aut C103204-C10.11D16320,80
C10.12D16 = C10.D16φ: D16/D8C2 ⊆ Aut C10160C10.12D16320,120
C10.13D16 = C5×C2.D16central extension (φ=1)160C10.13D16320,162
C10.14D16 = C5×C163C4central extension (φ=1)320C10.14D16320,171
C10.15D16 = C5×D32central extension (φ=1)1602C10.15D16320,176
C10.16D16 = C5×SD64central extension (φ=1)1602C10.16D16320,177
C10.17D16 = C5×Q64central extension (φ=1)3202C10.17D16320,178

׿
×
𝔽