metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊3SD64, Q32⋊1D5, C20.7D8, D80.2C2, C16.6D10, C40.11D4, C10.10D16, C80.4C22, C5⋊2C32⋊3C2, (C5×Q32)⋊1C2, C4.3(D4⋊D5), C8.11(C5⋊D4), C2.6(C5⋊D16), SmallGroup(320,79)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊SD64
G = < a,b,c | a5=b32=c2=1, bab-1=cac=a-1, cbc=b15 >
(1 63 145 87 112)(2 113 88 146 64)(3 33 147 89 114)(4 115 90 148 34)(5 35 149 91 116)(6 117 92 150 36)(7 37 151 93 118)(8 119 94 152 38)(9 39 153 95 120)(10 121 96 154 40)(11 41 155 65 122)(12 123 66 156 42)(13 43 157 67 124)(14 125 68 158 44)(15 45 159 69 126)(16 127 70 160 46)(17 47 129 71 128)(18 97 72 130 48)(19 49 131 73 98)(20 99 74 132 50)(21 51 133 75 100)(22 101 76 134 52)(23 53 135 77 102)(24 103 78 136 54)(25 55 137 79 104)(26 105 80 138 56)(27 57 139 81 106)(28 107 82 140 58)(29 59 141 83 108)(30 109 84 142 60)(31 61 143 85 110)(32 111 86 144 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(2 16)(3 31)(4 14)(5 29)(6 12)(7 27)(8 10)(9 25)(11 23)(13 21)(15 19)(18 32)(20 30)(22 28)(24 26)(33 110)(34 125)(35 108)(36 123)(37 106)(38 121)(39 104)(40 119)(41 102)(42 117)(43 100)(44 115)(45 98)(46 113)(47 128)(48 111)(49 126)(50 109)(51 124)(52 107)(53 122)(54 105)(55 120)(56 103)(57 118)(58 101)(59 116)(60 99)(61 114)(62 97)(63 112)(64 127)(65 135)(66 150)(67 133)(68 148)(69 131)(70 146)(71 129)(72 144)(73 159)(74 142)(75 157)(76 140)(77 155)(78 138)(79 153)(80 136)(81 151)(82 134)(83 149)(84 132)(85 147)(86 130)(87 145)(88 160)(89 143)(90 158)(91 141)(92 156)(93 139)(94 154)(95 137)(96 152)
G:=sub<Sym(160)| (1,63,145,87,112)(2,113,88,146,64)(3,33,147,89,114)(4,115,90,148,34)(5,35,149,91,116)(6,117,92,150,36)(7,37,151,93,118)(8,119,94,152,38)(9,39,153,95,120)(10,121,96,154,40)(11,41,155,65,122)(12,123,66,156,42)(13,43,157,67,124)(14,125,68,158,44)(15,45,159,69,126)(16,127,70,160,46)(17,47,129,71,128)(18,97,72,130,48)(19,49,131,73,98)(20,99,74,132,50)(21,51,133,75,100)(22,101,76,134,52)(23,53,135,77,102)(24,103,78,136,54)(25,55,137,79,104)(26,105,80,138,56)(27,57,139,81,106)(28,107,82,140,58)(29,59,141,83,108)(30,109,84,142,60)(31,61,143,85,110)(32,111,86,144,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26)(33,110)(34,125)(35,108)(36,123)(37,106)(38,121)(39,104)(40,119)(41,102)(42,117)(43,100)(44,115)(45,98)(46,113)(47,128)(48,111)(49,126)(50,109)(51,124)(52,107)(53,122)(54,105)(55,120)(56,103)(57,118)(58,101)(59,116)(60,99)(61,114)(62,97)(63,112)(64,127)(65,135)(66,150)(67,133)(68,148)(69,131)(70,146)(71,129)(72,144)(73,159)(74,142)(75,157)(76,140)(77,155)(78,138)(79,153)(80,136)(81,151)(82,134)(83,149)(84,132)(85,147)(86,130)(87,145)(88,160)(89,143)(90,158)(91,141)(92,156)(93,139)(94,154)(95,137)(96,152)>;
G:=Group( (1,63,145,87,112)(2,113,88,146,64)(3,33,147,89,114)(4,115,90,148,34)(5,35,149,91,116)(6,117,92,150,36)(7,37,151,93,118)(8,119,94,152,38)(9,39,153,95,120)(10,121,96,154,40)(11,41,155,65,122)(12,123,66,156,42)(13,43,157,67,124)(14,125,68,158,44)(15,45,159,69,126)(16,127,70,160,46)(17,47,129,71,128)(18,97,72,130,48)(19,49,131,73,98)(20,99,74,132,50)(21,51,133,75,100)(22,101,76,134,52)(23,53,135,77,102)(24,103,78,136,54)(25,55,137,79,104)(26,105,80,138,56)(27,57,139,81,106)(28,107,82,140,58)(29,59,141,83,108)(30,109,84,142,60)(31,61,143,85,110)(32,111,86,144,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26)(33,110)(34,125)(35,108)(36,123)(37,106)(38,121)(39,104)(40,119)(41,102)(42,117)(43,100)(44,115)(45,98)(46,113)(47,128)(48,111)(49,126)(50,109)(51,124)(52,107)(53,122)(54,105)(55,120)(56,103)(57,118)(58,101)(59,116)(60,99)(61,114)(62,97)(63,112)(64,127)(65,135)(66,150)(67,133)(68,148)(69,131)(70,146)(71,129)(72,144)(73,159)(74,142)(75,157)(76,140)(77,155)(78,138)(79,153)(80,136)(81,151)(82,134)(83,149)(84,132)(85,147)(86,130)(87,145)(88,160)(89,143)(90,158)(91,141)(92,156)(93,139)(94,154)(95,137)(96,152) );
G=PermutationGroup([[(1,63,145,87,112),(2,113,88,146,64),(3,33,147,89,114),(4,115,90,148,34),(5,35,149,91,116),(6,117,92,150,36),(7,37,151,93,118),(8,119,94,152,38),(9,39,153,95,120),(10,121,96,154,40),(11,41,155,65,122),(12,123,66,156,42),(13,43,157,67,124),(14,125,68,158,44),(15,45,159,69,126),(16,127,70,160,46),(17,47,129,71,128),(18,97,72,130,48),(19,49,131,73,98),(20,99,74,132,50),(21,51,133,75,100),(22,101,76,134,52),(23,53,135,77,102),(24,103,78,136,54),(25,55,137,79,104),(26,105,80,138,56),(27,57,139,81,106),(28,107,82,140,58),(29,59,141,83,108),(30,109,84,142,60),(31,61,143,85,110),(32,111,86,144,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(2,16),(3,31),(4,14),(5,29),(6,12),(7,27),(8,10),(9,25),(11,23),(13,21),(15,19),(18,32),(20,30),(22,28),(24,26),(33,110),(34,125),(35,108),(36,123),(37,106),(38,121),(39,104),(40,119),(41,102),(42,117),(43,100),(44,115),(45,98),(46,113),(47,128),(48,111),(49,126),(50,109),(51,124),(52,107),(53,122),(54,105),(55,120),(56,103),(57,118),(58,101),(59,116),(60,99),(61,114),(62,97),(63,112),(64,127),(65,135),(66,150),(67,133),(68,148),(69,131),(70,146),(71,129),(72,144),(73,159),(74,142),(75,157),(76,140),(77,155),(78,138),(79,153),(80,136),(81,151),(82,134),(83,149),(84,132),(85,147),(86,130),(87,145),(88,160),(89,143),(90,158),(91,141),(92,156),(93,139),(94,154),(95,137),(96,152)]])
41 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 5A | 5B | 8A | 8B | 10A | 10B | 16A | 16B | 16C | 16D | 20A | 20B | 20C | 20D | 20E | 20F | 32A | ··· | 32H | 40A | 40B | 40C | 40D | 80A | ··· | 80H |
order | 1 | 2 | 2 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 20 | 20 | 32 | ··· | 32 | 40 | 40 | 40 | 40 | 80 | ··· | 80 |
size | 1 | 1 | 80 | 2 | 16 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 16 | 16 | 16 | 16 | 10 | ··· | 10 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
41 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | D4 | D5 | D8 | D10 | D16 | C5⋊D4 | SD64 | D4⋊D5 | C5⋊D16 | C5⋊SD64 |
kernel | C5⋊SD64 | C5⋊2C32 | D80 | C5×Q32 | C40 | Q32 | C20 | C16 | C10 | C8 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 2 | 4 | 8 |
Matrix representation of C5⋊SD64 ►in GL4(𝔽641) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 640 | 362 |
37 | 312 | 0 | 0 |
329 | 37 | 0 | 0 |
0 | 0 | 419 | 17 |
0 | 0 | 419 | 222 |
1 | 0 | 0 | 0 |
0 | 640 | 0 | 0 |
0 | 0 | 362 | 640 |
0 | 0 | 279 | 279 |
G:=sub<GL(4,GF(641))| [1,0,0,0,0,1,0,0,0,0,0,640,0,0,1,362],[37,329,0,0,312,37,0,0,0,0,419,419,0,0,17,222],[1,0,0,0,0,640,0,0,0,0,362,279,0,0,640,279] >;
C5⋊SD64 in GAP, Magma, Sage, TeX
C_5\rtimes {\rm SD}_{64}
% in TeX
G:=Group("C5:SD64");
// GroupNames label
G:=SmallGroup(320,79);
// by ID
G=gap.SmallGroup(320,79);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,85,232,254,135,142,675,346,192,1684,851,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^5=b^32=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^15>;
// generators/relations
Export