Extensions 1→N→G→Q→1 with N=C5×D8 and Q=C4

Direct product G=N×Q with N=C5×D8 and Q=C4
dρLabelID
D8×C20160D8xC20320,938

Semidirect products G=N:Q with N=C5×D8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×D8)⋊1C4 = D10.D8φ: C4/C1C4 ⊆ Out C5×D8808-(C5xD8):1C4320,241
(C5×D8)⋊2C4 = D40⋊C4φ: C4/C1C4 ⊆ Out C5×D8408+(C5xD8):2C4320,1069
(C5×D8)⋊3C4 = D8⋊F5φ: C4/C1C4 ⊆ Out C5×D8808-(C5xD8):3C4320,1071
(C5×D8)⋊4C4 = D5.D16φ: C4/C1C4 ⊆ Out C5×D8808+(C5xD8):4C4320,242
(C5×D8)⋊5C4 = D8×F5φ: C4/C1C4 ⊆ Out C5×D8408+(C5xD8):5C4320,1068
(C5×D8)⋊6C4 = D85F5φ: C4/C1C4 ⊆ Out C5×D8808-(C5xD8):6C4320,1070
(C5×D8)⋊7C4 = C10.D16φ: C4/C2C2 ⊆ Out C5×D8160(C5xD8):7C4320,120
(C5×D8)⋊8C4 = D8×Dic5φ: C4/C2C2 ⊆ Out C5×D8160(C5xD8):8C4320,776
(C5×D8)⋊9C4 = D85Dic5φ: C4/C2C2 ⊆ Out C5×D8804(C5xD8):9C4320,823
(C5×D8)⋊10C4 = D82Dic5φ: C4/C2C2 ⊆ Out C5×D8804(C5xD8):10C4320,124
(C5×D8)⋊11C4 = D8⋊Dic5φ: C4/C2C2 ⊆ Out C5×D8160(C5xD8):11C4320,779
(C5×D8)⋊12C4 = D84Dic5φ: C4/C2C2 ⊆ Out C5×D8804(C5xD8):12C4320,824
(C5×D8)⋊13C4 = C5×C2.D16φ: C4/C2C2 ⊆ Out C5×D8160(C5xD8):13C4320,162
(C5×D8)⋊14C4 = C5×D82C4φ: C4/C2C2 ⊆ Out C5×D8804(C5xD8):14C4320,165
(C5×D8)⋊15C4 = C5×D8⋊C4φ: C4/C2C2 ⊆ Out C5×D8160(C5xD8):15C4320,943
(C5×D8)⋊16C4 = C5×C8.26D4φ: C4/C2C2 ⊆ Out C5×D8804(C5xD8):16C4320,945
(C5×D8)⋊17C4 = C5×C8○D8φ: trivial image802(C5xD8):17C4320,944

Non-split extensions G=N.Q with N=C5×D8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×D8).1C4 = D40.C4φ: C4/C1C4 ⊆ Out C5×D8808+(C5xD8).1C4320,244
(C5×D8).2C4 = D8.F5φ: C4/C1C4 ⊆ Out C5×D81608-(C5xD8).2C4320,243
(C5×D8).3C4 = C20.58D8φ: C4/C2C2 ⊆ Out C5×D81604(C5xD8).3C4320,125
(C5×D8).4C4 = D8.Dic5φ: C4/C2C2 ⊆ Out C5×D8804(C5xD8).4C4320,121
(C5×D8).5C4 = C5×D8.C4φ: C4/C2C2 ⊆ Out C5×D81602(C5xD8).5C4320,164
(C5×D8).6C4 = C5×M5(2)⋊C2φ: C4/C2C2 ⊆ Out C5×D8804(C5xD8).6C4320,166

׿
×
𝔽