# Extensions 1→N→G→Q→1 with N=C22.D4 and Q=D5

Direct product G=N×Q with N=C22.D4 and Q=D5
dρLabelID
D5×C22.D480D5xC2^2.D4320,1324

Semidirect products G=N:Q with N=C22.D4 and Q=D5
extensionφ:Q→Out NdρLabelID
C22.D41D5 = C22⋊C4⋊D10φ: D5/C5C2 ⊆ Out C22.D4804C2^2.D4:1D5320,680
C22.D42D5 = C10.792- 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:2D5320,1320
C22.D43D5 = C10.1202+ 1+4φ: D5/C5C2 ⊆ Out C22.D480C2^2.D4:3D5320,1325
C22.D44D5 = C10.1212+ 1+4φ: D5/C5C2 ⊆ Out C22.D480C2^2.D4:4D5320,1326
C22.D45D5 = C10.822- 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:5D5320,1327
C22.D46D5 = C10.612+ 1+4φ: D5/C5C2 ⊆ Out C22.D480C2^2.D4:6D5320,1329
C22.D47D5 = C10.1222+ 1+4φ: D5/C5C2 ⊆ Out C22.D480C2^2.D4:7D5320,1330
C22.D48D5 = C10.622+ 1+4φ: D5/C5C2 ⊆ Out C22.D480C2^2.D4:8D5320,1331
C22.D49D5 = C10.632+ 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:9D5320,1332
C22.D410D5 = C10.642+ 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:10D5320,1333
C22.D411D5 = C10.842- 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:11D5320,1334
C22.D412D5 = C10.662+ 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:12D5320,1335
C22.D413D5 = C10.672+ 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:13D5320,1336
C22.D414D5 = C10.852- 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:14D5320,1337
C22.D415D5 = C10.682+ 1+4φ: D5/C5C2 ⊆ Out C22.D480C2^2.D4:15D5320,1338
C22.D416D5 = C10.692+ 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4:16D5320,1339
C22.D417D5 = C4⋊C4.197D10φ: trivial image160C2^2.D4:17D5320,1321
C22.D418D5 = C4⋊C428D10φ: trivial image80C2^2.D4:18D5320,1328

Non-split extensions G=N.Q with N=C22.D4 and Q=D5
extensionφ:Q→Out NdρLabelID
C22.D4.1D5 = (C22×C20)⋊C4φ: D5/C5C2 ⊆ Out C22.D4804C2^2.D4.1D5320,97
C22.D4.2D5 = C10.802- 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4.2D5320,1322
C22.D4.3D5 = C10.812- 1+4φ: D5/C5C2 ⊆ Out C22.D4160C2^2.D4.3D5320,1323

׿
×
𝔽