Copied to
clipboard

G = C10.1222+ 1+4order 320 = 26·5

31st non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C4○D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.1222+ 1+4, C4⋊C430D10, C22⋊C417D10, (D4×Dic5)⋊28C2, D102Q832C2, C23⋊D10.2C2, (C2×D4).166D10, (C2×C20).74C23, C4⋊Dic539C22, C22.D47D5, Dic54D421C2, D10.35(C4○D4), (C2×C10).202C24, (C4×Dic5)⋊55C22, (C22×C4).258D10, D10.12D431C2, C2.43(D48D10), C23.D531C22, Dic5.5D433C2, C56(C22.45C24), (C2×Dic10)⋊30C22, (D4×C10).140C22, C22.D2021C2, C10.D424C22, (C22×D5).86C23, (C23×D5).59C22, C22.223(C23×D5), C23.202(C22×D5), Dic5.14D432C2, D10⋊C4.33C22, C22.19(D42D5), C23.21D1012C2, (C22×C10).222C23, (C22×C20).114C22, (C2×Dic5).255C23, (C22×Dic5)⋊26C22, C2.64(D5×C4○D4), C4⋊C47D532C2, C4⋊C4⋊D528C2, (C5×C4⋊C4)⋊28C22, (D5×C22⋊C4)⋊14C2, C10.176(C2×C4○D4), C2.53(C2×D42D5), (C2×D10⋊C4)⋊24C2, (C2×C4×D5).120C22, (C2×C10).47(C4○D4), (C5×C22⋊C4)⋊24C22, (C2×C4).297(C22×D5), (C2×C5⋊D4).47C22, (C5×C22.D4)⋊10C2, SmallGroup(320,1330)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.1222+ 1+4
C1C5C10C2×C10C22×D5C23×D5C2×D10⋊C4 — C10.1222+ 1+4
C5C2×C10 — C10.1222+ 1+4
C1C22C22.D4

Generators and relations for C10.1222+ 1+4
 G = < a,b,c,d,e | a10=b4=c2=1, d2=b2, e2=a5, bab-1=eae-1=a-1, ac=ca, ad=da, cbc=b-1, dbd-1=a5b, be=eb, dcd-1=a5c, ce=ec, ede-1=a5b2d >

Subgroups: 950 in 248 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C422C2, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×C10, C22.45C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, C23×D5, Dic5.14D4, D5×C22⋊C4, Dic54D4, D10.12D4, Dic5.5D4, C22.D20, C4⋊C47D5, D102Q8, C4⋊C4⋊D5, C23.21D10, C2×D10⋊C4, D4×Dic5, C23⋊D10, C5×C22.D4, C10.1222+ 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.45C24, D42D5, C23×D5, C2×D42D5, D5×C4○D4, D48D10, C10.1222+ 1+4

Smallest permutation representation of C10.1222+ 1+4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 73 27 16)(2 72 28 15)(3 71 29 14)(4 80 30 13)(5 79 21 12)(6 78 22 11)(7 77 23 20)(8 76 24 19)(9 75 25 18)(10 74 26 17)(31 62 48 55)(32 61 49 54)(33 70 50 53)(34 69 41 52)(35 68 42 51)(36 67 43 60)(37 66 44 59)(38 65 45 58)(39 64 46 57)(40 63 47 56)
(1 78)(2 79)(3 80)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 27)(12 28)(13 29)(14 30)(15 21)(16 22)(17 23)(18 24)(19 25)(20 26)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 61)(40 62)(41 59)(42 60)(43 51)(44 52)(45 53)(46 54)(47 55)(48 56)(49 57)(50 58)
(1 38 27 45)(2 39 28 46)(3 40 29 47)(4 31 30 48)(5 32 21 49)(6 33 22 50)(7 34 23 41)(8 35 24 42)(9 36 25 43)(10 37 26 44)(11 58 78 65)(12 59 79 66)(13 60 80 67)(14 51 71 68)(15 52 72 69)(16 53 73 70)(17 54 74 61)(18 55 75 62)(19 56 76 63)(20 57 77 64)
(1 50 6 45)(2 49 7 44)(3 48 8 43)(4 47 9 42)(5 46 10 41)(11 65 16 70)(12 64 17 69)(13 63 18 68)(14 62 19 67)(15 61 20 66)(21 39 26 34)(22 38 27 33)(23 37 28 32)(24 36 29 31)(25 35 30 40)(51 80 56 75)(52 79 57 74)(53 78 58 73)(54 77 59 72)(55 76 60 71)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,73,27,16)(2,72,28,15)(3,71,29,14)(4,80,30,13)(5,79,21,12)(6,78,22,11)(7,77,23,20)(8,76,24,19)(9,75,25,18)(10,74,26,17)(31,62,48,55)(32,61,49,54)(33,70,50,53)(34,69,41,52)(35,68,42,51)(36,67,43,60)(37,66,44,59)(38,65,45,58)(39,64,46,57)(40,63,47,56), (1,78)(2,79)(3,80)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,61)(40,62)(41,59)(42,60)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57)(50,58), (1,38,27,45)(2,39,28,46)(3,40,29,47)(4,31,30,48)(5,32,21,49)(6,33,22,50)(7,34,23,41)(8,35,24,42)(9,36,25,43)(10,37,26,44)(11,58,78,65)(12,59,79,66)(13,60,80,67)(14,51,71,68)(15,52,72,69)(16,53,73,70)(17,54,74,61)(18,55,75,62)(19,56,76,63)(20,57,77,64), (1,50,6,45)(2,49,7,44)(3,48,8,43)(4,47,9,42)(5,46,10,41)(11,65,16,70)(12,64,17,69)(13,63,18,68)(14,62,19,67)(15,61,20,66)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(51,80,56,75)(52,79,57,74)(53,78,58,73)(54,77,59,72)(55,76,60,71)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,73,27,16)(2,72,28,15)(3,71,29,14)(4,80,30,13)(5,79,21,12)(6,78,22,11)(7,77,23,20)(8,76,24,19)(9,75,25,18)(10,74,26,17)(31,62,48,55)(32,61,49,54)(33,70,50,53)(34,69,41,52)(35,68,42,51)(36,67,43,60)(37,66,44,59)(38,65,45,58)(39,64,46,57)(40,63,47,56), (1,78)(2,79)(3,80)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,61)(40,62)(41,59)(42,60)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57)(50,58), (1,38,27,45)(2,39,28,46)(3,40,29,47)(4,31,30,48)(5,32,21,49)(6,33,22,50)(7,34,23,41)(8,35,24,42)(9,36,25,43)(10,37,26,44)(11,58,78,65)(12,59,79,66)(13,60,80,67)(14,51,71,68)(15,52,72,69)(16,53,73,70)(17,54,74,61)(18,55,75,62)(19,56,76,63)(20,57,77,64), (1,50,6,45)(2,49,7,44)(3,48,8,43)(4,47,9,42)(5,46,10,41)(11,65,16,70)(12,64,17,69)(13,63,18,68)(14,62,19,67)(15,61,20,66)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(51,80,56,75)(52,79,57,74)(53,78,58,73)(54,77,59,72)(55,76,60,71) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,73,27,16),(2,72,28,15),(3,71,29,14),(4,80,30,13),(5,79,21,12),(6,78,22,11),(7,77,23,20),(8,76,24,19),(9,75,25,18),(10,74,26,17),(31,62,48,55),(32,61,49,54),(33,70,50,53),(34,69,41,52),(35,68,42,51),(36,67,43,60),(37,66,44,59),(38,65,45,58),(39,64,46,57),(40,63,47,56)], [(1,78),(2,79),(3,80),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,27),(12,28),(13,29),(14,30),(15,21),(16,22),(17,23),(18,24),(19,25),(20,26),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,61),(40,62),(41,59),(42,60),(43,51),(44,52),(45,53),(46,54),(47,55),(48,56),(49,57),(50,58)], [(1,38,27,45),(2,39,28,46),(3,40,29,47),(4,31,30,48),(5,32,21,49),(6,33,22,50),(7,34,23,41),(8,35,24,42),(9,36,25,43),(10,37,26,44),(11,58,78,65),(12,59,79,66),(13,60,80,67),(14,51,71,68),(15,52,72,69),(16,53,73,70),(17,54,74,61),(18,55,75,62),(19,56,76,63),(20,57,77,64)], [(1,50,6,45),(2,49,7,44),(3,48,8,43),(4,47,9,42),(5,46,10,41),(11,65,16,70),(12,64,17,69),(13,63,18,68),(14,62,19,67),(15,61,20,66),(21,39,26,34),(22,38,27,33),(23,37,28,32),(24,36,29,31),(25,35,30,40),(51,80,56,75),(52,79,57,74),(53,78,58,73),(54,77,59,72),(55,76,60,71)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G···4L4M4N4O5A5B10A···10F10G10H10I10J10K10L20A···20H20I···20N
order12222222224444444···44445510···1010101010101020···2020···20
size111122410102022444410···10202020222···24444884···48···8

53 irreducible representations

dim11111111111111122222224444
type+++++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D102+ 1+4D42D5D5×C4○D4D48D10
kernelC10.1222+ 1+4Dic5.14D4D5×C22⋊C4Dic54D4D10.12D4Dic5.5D4C22.D20C4⋊C47D5D102Q8C4⋊C4⋊D5C23.21D10C2×D10⋊C4D4×Dic5C23⋊D10C5×C22.D4C22.D4D10C2×C10C22⋊C4C4⋊C4C22×C4C2×D4C10C22C2C2
# reps11111111121111124464221444

Matrix representation of C10.1222+ 1+4 in GL6(𝔽41)

4000000
0400000
00353500
0064000
0000400
0000040
,
090000
3200000
0040000
0035100
000012
00004040
,
0320000
900000
0040000
0004000
000012
0000040
,
010000
100000
001000
000100
000090
00003232
,
010000
4000000
001000
0064000
000090
000009

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,6,0,0,0,0,35,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,32,0,0,0,0,9,0,0,0,0,0,0,0,40,35,0,0,0,0,0,1,0,0,0,0,0,0,1,40,0,0,0,0,2,40],[0,9,0,0,0,0,32,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,2,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,32,0,0,0,0,0,32],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,6,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9] >;

C10.1222+ 1+4 in GAP, Magma, Sage, TeX

C_{10}._{122}2_+^{1+4}
% in TeX

G:=Group("C10.122ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1330);
// by ID

G=gap.SmallGroup(320,1330);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,100,346,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=b^2,e^2=a^5,b*a*b^-1=e*a*e^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations

׿
×
𝔽