Copied to
clipboard

G = C10.682+ 1+4order 320 = 26·5

68th non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.682+ 1+4, C4⋊C416D10, C4⋊D2032C2, C207D414C2, C20⋊D422C2, C22⋊C419D10, (C22×C4)⋊25D10, D10⋊D435C2, C23⋊D1018C2, C22⋊D2022C2, (C2×D4).105D10, (C2×D20)⋊27C22, C4⋊Dic516C22, D10⋊C45C22, (C2×C10).210C24, (C2×C20).184C23, (C22×C20)⋊13C22, (C4×Dic5)⋊34C22, C22.D415D5, D10.12D438C2, C2.46(D48D10), C2.70(D46D10), C53(C22.54C24), (D4×C10).148C22, C10.D425C22, (C22×D5).91C23, (C23×D5).61C22, C22.231(C23×D5), C23.131(C22×D5), C23.D5.48C22, (C22×C10).224C23, (C2×Dic5).109C23, (C2×C4×D5)⋊24C22, C4⋊C4⋊D532C2, (C5×C4⋊C4)⋊30C22, (C2×C5⋊D4)⋊21C22, (C2×C4).71(C22×D5), (C5×C22⋊C4)⋊26C22, (C5×C22.D4)⋊18C2, SmallGroup(320,1338)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.682+ 1+4
C1C5C10C2×C10C22×D5C23×D5C22⋊D20 — C10.682+ 1+4
C5C2×C10 — C10.682+ 1+4
C1C22C22.D4

Generators and relations for C10.682+ 1+4
 G = < a,b,c,d,e | a10=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=a5b-1, bd=db, ebe=a5b, dcd-1=ece=a5c, ede=b2d >

Subgroups: 1190 in 252 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×9], C22, C22 [×22], C5, C2×C4, C2×C4 [×4], C2×C4 [×7], D4 [×12], C23 [×2], C23 [×7], D5 [×4], C10, C10 [×2], C10 [×2], C42, C22⋊C4, C22⋊C4 [×2], C22⋊C4 [×9], C4⋊C4 [×2], C4⋊C4 [×4], C22×C4, C22×C4 [×2], C2×D4, C2×D4 [×11], C24, Dic5 [×4], C20 [×5], D10 [×16], C2×C10, C2×C10 [×6], C22≀C2 [×3], C4⋊D4 [×6], C22.D4, C22.D4 [×2], C422C2 [×2], C41D4, C4×D5 [×2], D20 [×5], C2×Dic5 [×4], C5⋊D4 [×6], C2×C20, C2×C20 [×4], C2×C20, C5×D4, C22×D5 [×4], C22×D5 [×3], C22×C10 [×2], C22.54C24, C4×Dic5, C10.D4 [×2], C4⋊Dic5 [×2], D10⋊C4 [×8], C23.D5, C5×C22⋊C4, C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×C4×D5 [×2], C2×D20, C2×D20 [×4], C2×C5⋊D4 [×6], C22×C20, D4×C10, C23×D5, C22⋊D20 [×2], D10.12D4 [×2], D10⋊D4 [×2], C4⋊D20 [×2], C4⋊C4⋊D5 [×2], C207D4 [×2], C23⋊D10, C20⋊D4, C5×C22.D4, C10.682+ 1+4
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ 1+4 [×3], C22×D5 [×7], C22.54C24, C23×D5, D46D10, D48D10 [×2], C10.682+ 1+4

Smallest permutation representation of C10.682+ 1+4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 43 18 58)(2 44 19 59)(3 45 20 60)(4 46 11 51)(5 47 12 52)(6 48 13 53)(7 49 14 54)(8 50 15 55)(9 41 16 56)(10 42 17 57)(21 66 36 71)(22 67 37 72)(23 68 38 73)(24 69 39 74)(25 70 40 75)(26 61 31 76)(27 62 32 77)(28 63 33 78)(29 64 34 79)(30 65 35 80)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 33 18 28)(2 32 19 27)(3 31 20 26)(4 40 11 25)(5 39 12 24)(6 38 13 23)(7 37 14 22)(8 36 15 21)(9 35 16 30)(10 34 17 29)(41 80 56 65)(42 79 57 64)(43 78 58 63)(44 77 59 62)(45 76 60 61)(46 75 51 70)(47 74 52 69)(48 73 53 68)(49 72 54 67)(50 71 55 66)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,43,18,58)(2,44,19,59)(3,45,20,60)(4,46,11,51)(5,47,12,52)(6,48,13,53)(7,49,14,54)(8,50,15,55)(9,41,16,56)(10,42,17,57)(21,66,36,71)(22,67,37,72)(23,68,38,73)(24,69,39,74)(25,70,40,75)(26,61,31,76)(27,62,32,77)(28,63,33,78)(29,64,34,79)(30,65,35,80), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,33,18,28)(2,32,19,27)(3,31,20,26)(4,40,11,25)(5,39,12,24)(6,38,13,23)(7,37,14,22)(8,36,15,21)(9,35,16,30)(10,34,17,29)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,43,18,58)(2,44,19,59)(3,45,20,60)(4,46,11,51)(5,47,12,52)(6,48,13,53)(7,49,14,54)(8,50,15,55)(9,41,16,56)(10,42,17,57)(21,66,36,71)(22,67,37,72)(23,68,38,73)(24,69,39,74)(25,70,40,75)(26,61,31,76)(27,62,32,77)(28,63,33,78)(29,64,34,79)(30,65,35,80), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,33,18,28)(2,32,19,27)(3,31,20,26)(4,40,11,25)(5,39,12,24)(6,38,13,23)(7,37,14,22)(8,36,15,21)(9,35,16,30)(10,34,17,29)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,43,18,58),(2,44,19,59),(3,45,20,60),(4,46,11,51),(5,47,12,52),(6,48,13,53),(7,49,14,54),(8,50,15,55),(9,41,16,56),(10,42,17,57),(21,66,36,71),(22,67,37,72),(23,68,38,73),(24,69,39,74),(25,70,40,75),(26,61,31,76),(27,62,32,77),(28,63,33,78),(29,64,34,79),(30,65,35,80)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,33,18,28),(2,32,19,27),(3,31,20,26),(4,40,11,25),(5,39,12,24),(6,38,13,23),(7,37,14,22),(8,36,15,21),(9,35,16,30),(10,34,17,29),(41,80,56,65),(42,79,57,64),(43,78,58,63),(44,77,59,62),(45,76,60,61),(46,75,51,70),(47,74,52,69),(48,73,53,68),(49,72,54,67),(50,71,55,66)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4E4F4G4H4I5A5B10A···10F10G10H10I10J10K10L20A···20H20I···20N
order12222222224···444445510···1010101010101020···2020···20
size111144202020204···420202020222···24444884···48···8

47 irreducible representations

dim111111111122222444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D5D10D10D10D102+ 1+4D46D10D48D10
kernelC10.682+ 1+4C22⋊D20D10.12D4D10⋊D4C4⋊D20C4⋊C4⋊D5C207D4C23⋊D10C20⋊D4C5×C22.D4C22.D4C22⋊C4C4⋊C4C22×C4C2×D4C10C2C2
# reps122222211126422348

Matrix representation of C10.682+ 1+4 in GL8(𝔽41)

76000000
340000000
00760000
003400000
0000343400
00007100
0000003434
00000071
,
0011130000
0019300000
3028000000
2211000000
000011900
0000323000
0000003032
000000911
,
10000000
01000000
004000000
000400000
00001000
00000100
000000400
000000040
,
00760000
0033340000
76000000
3334000000
000000400
00000071
00001000
0000344000
,
00100000
00010000
10000000
01000000
00000010
00000001
00001000
00000100

G:=sub<GL(8,GF(41))| [7,34,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,7,34,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,34,7,0,0,0,0,0,0,34,1,0,0,0,0,0,0,0,0,34,7,0,0,0,0,0,0,34,1],[0,0,30,22,0,0,0,0,0,0,28,11,0,0,0,0,11,19,0,0,0,0,0,0,13,30,0,0,0,0,0,0,0,0,0,0,11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,30,9,0,0,0,0,0,0,32,11],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[0,0,7,33,0,0,0,0,0,0,6,34,0,0,0,0,7,33,0,0,0,0,0,0,6,34,0,0,0,0,0,0,0,0,0,0,0,0,1,34,0,0,0,0,0,0,0,40,0,0,0,0,40,7,0,0,0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C10.682+ 1+4 in GAP, Magma, Sage, TeX

C_{10}._{68}2_+^{1+4}
% in TeX

G:=Group("C10.68ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1338);
// by ID

G=gap.SmallGroup(320,1338);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,219,184,1571,570,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=a^5*b^-1,b*d=d*b,e*b*e=a^5*b,d*c*d^-1=e*c*e=a^5*c,e*d*e=b^2*d>;
// generators/relations

׿
×
𝔽