Copied to
clipboard

G = C4⋊C428D10order 320 = 26·5

11st semidirect product of C4⋊C4 and D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C428D10, D105(C4○D4), C22⋊C431D10, (C2×Dic5)⋊21D4, D208C432C2, D10⋊D431C2, C22⋊D2020C2, C23⋊D1016C2, C22.45(D4×D5), D10⋊Q829C2, (C2×D4).165D10, (C2×C20).73C23, Dic5.89(C2×D4), C10.85(C22×D4), Dic54D420C2, (C2×C10).200C24, C56(C22.19C24), (C4×Dic5)⋊32C22, (C22×C4).322D10, C22.D418D5, D10⋊C427C22, C23.27(C22×D5), (C2×Dic10)⋊28C22, (C2×D20).162C22, (D4×C10).138C22, C10.D423C22, (C22×C10).35C23, C22.221(C23×D5), C23.D5.43C22, C23.11D1013C2, C23.23D1021C2, (C22×C20).368C22, (C2×Dic5).104C23, (C22×Dic5)⋊25C22, (C22×D5).218C23, (C23×D5).122C22, C2.58(C2×D4×D5), C2.62(D5×C4○D4), (D5×C22×C4)⋊24C2, (C2×C4×D5)⋊22C22, (C5×C4⋊C4)⋊26C22, (C2×C10).61(C2×D4), (C2×D42D5)⋊17C2, C10.174(C2×C4○D4), (C2×C5⋊D4)⋊19C22, (C2×C4).63(C22×D5), (C5×C22⋊C4)⋊22C22, (C5×C22.D4)⋊8C2, SmallGroup(320,1328)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C4⋊C428D10
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — C4⋊C428D10
C5C2×C10 — C4⋊C428D10
C1C22C22.D4

Generators and relations for C4⋊C428D10
 G = < a,b,c,d | a4=b4=c10=d2=1, bab-1=dad=a-1, cac-1=ab2, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 1262 in 330 conjugacy classes, 107 normal (39 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22.D4, C23×C4, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×D5, C22×C10, C22.19C24, C4×Dic5, C10.D4, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×C4×D5, C2×D20, D42D5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, D4×C10, C23×D5, C23.11D10, Dic54D4, C22⋊D20, D10⋊D4, D208C4, D10⋊Q8, C23.23D10, C23⋊D10, C5×C22.D4, D5×C22×C4, C2×D42D5, C4⋊C428D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, C22×D5, C22.19C24, D4×D5, C23×D5, C2×D4×D5, D5×C4○D4, C4⋊C428D10

Smallest permutation representation of C4⋊C428D10
On 80 points
Generators in S80
(1 70 18 65)(2 79 19 74)(3 62 20 67)(4 71 11 76)(5 64 12 69)(6 73 13 78)(7 66 14 61)(8 75 15 80)(9 68 16 63)(10 77 17 72)(21 54 26 49)(22 45 27 60)(23 56 28 41)(24 47 29 52)(25 58 30 43)(31 46 36 51)(32 57 37 42)(33 48 38 53)(34 59 39 44)(35 50 40 55)
(1 30 13 38)(2 39 14 21)(3 22 15 40)(4 31 16 23)(5 24 17 32)(6 33 18 25)(7 26 19 34)(8 35 20 27)(9 28 11 36)(10 37 12 29)(41 71 51 63)(42 64 52 72)(43 73 53 65)(44 66 54 74)(45 75 55 67)(46 68 56 76)(47 77 57 69)(48 70 58 78)(49 79 59 61)(50 62 60 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 20)(9 19)(10 18)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 40)(28 39)(29 38)(30 37)(41 59)(42 58)(43 57)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(50 60)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 80)(68 79)(69 78)(70 77)

G:=sub<Sym(80)| (1,70,18,65)(2,79,19,74)(3,62,20,67)(4,71,11,76)(5,64,12,69)(6,73,13,78)(7,66,14,61)(8,75,15,80)(9,68,16,63)(10,77,17,72)(21,54,26,49)(22,45,27,60)(23,56,28,41)(24,47,29,52)(25,58,30,43)(31,46,36,51)(32,57,37,42)(33,48,38,53)(34,59,39,44)(35,50,40,55), (1,30,13,38)(2,39,14,21)(3,22,15,40)(4,31,16,23)(5,24,17,32)(6,33,18,25)(7,26,19,34)(8,35,20,27)(9,28,11,36)(10,37,12,29)(41,71,51,63)(42,64,52,72)(43,73,53,65)(44,66,54,74)(45,75,55,67)(46,68,56,76)(47,77,57,69)(48,70,58,78)(49,79,59,61)(50,62,60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,20)(9,19)(10,18)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,40)(28,39)(29,38)(30,37)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(50,60)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,80)(68,79)(69,78)(70,77)>;

G:=Group( (1,70,18,65)(2,79,19,74)(3,62,20,67)(4,71,11,76)(5,64,12,69)(6,73,13,78)(7,66,14,61)(8,75,15,80)(9,68,16,63)(10,77,17,72)(21,54,26,49)(22,45,27,60)(23,56,28,41)(24,47,29,52)(25,58,30,43)(31,46,36,51)(32,57,37,42)(33,48,38,53)(34,59,39,44)(35,50,40,55), (1,30,13,38)(2,39,14,21)(3,22,15,40)(4,31,16,23)(5,24,17,32)(6,33,18,25)(7,26,19,34)(8,35,20,27)(9,28,11,36)(10,37,12,29)(41,71,51,63)(42,64,52,72)(43,73,53,65)(44,66,54,74)(45,75,55,67)(46,68,56,76)(47,77,57,69)(48,70,58,78)(49,79,59,61)(50,62,60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,20)(9,19)(10,18)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,40)(28,39)(29,38)(30,37)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(50,60)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,80)(68,79)(69,78)(70,77) );

G=PermutationGroup([[(1,70,18,65),(2,79,19,74),(3,62,20,67),(4,71,11,76),(5,64,12,69),(6,73,13,78),(7,66,14,61),(8,75,15,80),(9,68,16,63),(10,77,17,72),(21,54,26,49),(22,45,27,60),(23,56,28,41),(24,47,29,52),(25,58,30,43),(31,46,36,51),(32,57,37,42),(33,48,38,53),(34,59,39,44),(35,50,40,55)], [(1,30,13,38),(2,39,14,21),(3,22,15,40),(4,31,16,23),(5,24,17,32),(6,33,18,25),(7,26,19,34),(8,35,20,27),(9,28,11,36),(10,37,12,29),(41,71,51,63),(42,64,52,72),(43,73,53,65),(44,66,54,74),(45,75,55,67),(46,68,56,76),(47,77,57,69),(48,70,58,78),(49,79,59,61),(50,62,60,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,20),(9,19),(10,18),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,40),(28,39),(29,38),(30,37),(41,59),(42,58),(43,57),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(50,60),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,80),(68,79),(69,78),(70,77)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10F10G10H10I10J10K10L20A···20H20I···20N
order12222222222244444444444444445510···1010101010101020···2020···20
size11112241010101020222244455551010202020222···24444884···48···8

56 irreducible representations

dim111111111111222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D4×D5D5×C4○D4
kernelC4⋊C428D10C23.11D10Dic54D4C22⋊D20D10⋊D4D208C4D10⋊Q8C23.23D10C23⋊D10C5×C22.D4D5×C22×C4C2×D42D5C2×Dic5C22.D4D10C22⋊C4C4⋊C4C22×C4C2×D4C22C2
# reps112122211111428642248

Matrix representation of C4⋊C428D10 in GL6(𝔽41)

0400000
100000
001000
000100
0000937
0000032
,
0400000
4000000
0040000
0004000
0000405
0000161
,
4000000
0400000
00353500
0064000
000010
00002540
,
100000
0400000
00353500
0040600
0000400
0000161

G:=sub<GL(6,GF(41))| [0,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,37,32],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,16,0,0,0,0,5,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,6,0,0,0,0,35,40,0,0,0,0,0,0,1,25,0,0,0,0,0,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,35,40,0,0,0,0,35,6,0,0,0,0,0,0,40,16,0,0,0,0,0,1] >;

C4⋊C428D10 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{28}D_{10}
% in TeX

G:=Group("C4:C4:28D10");
// GroupNames label

G:=SmallGroup(320,1328);
// by ID

G=gap.SmallGroup(320,1328);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,100,1123,346,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a*b^2,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽