Extensions 1→N→G→Q→1 with N=C2×SD16 and Q=C10

Direct product G=N×Q with N=C2×SD16 and Q=C10
dρLabelID
SD16×C2×C10160SD16xC2xC10320,1572

Semidirect products G=N:Q with N=C2×SD16 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×SD16)⋊1C10 = C5×C8⋊D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):1C10320,969
(C2×SD16)⋊2C10 = C5×D4.3D4φ: C10/C5C2 ⊆ Out C2×SD16804(C2xSD16):2C10320,972
(C2×SD16)⋊3C10 = C5×C83D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):3C10320,997
(C2×SD16)⋊4C10 = C10×C8⋊C22φ: C10/C5C2 ⊆ Out C2×SD1680(C2xSD16):4C10320,1575
(C2×SD16)⋊5C10 = C10×C8.C22φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):5C10320,1576
(C2×SD16)⋊6C10 = C5×D4○SD16φ: C10/C5C2 ⊆ Out C2×SD16804(C2xSD16):6C10320,1579
(C2×SD16)⋊7C10 = C5×Q8⋊D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):7C10320,949
(C2×SD16)⋊8C10 = C5×D4⋊D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):8C10320,950
(C2×SD16)⋊9C10 = C5×C22⋊SD16φ: C10/C5C2 ⊆ Out C2×SD1680(C2xSD16):9C10320,951
(C2×SD16)⋊10C10 = C5×D4.7D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):10C10320,953
(C2×SD16)⋊11C10 = C5×C4⋊SD16φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):11C10320,961
(C2×SD16)⋊12C10 = C5×D4.2D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):12C10320,964
(C2×SD16)⋊13C10 = C5×C88D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):13C10320,966
(C2×SD16)⋊14C10 = C5×C85D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):14C10320,993
(C2×SD16)⋊15C10 = C5×C8.12D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16):15C10320,996
(C2×SD16)⋊16C10 = C10×C4○D8φ: trivial image160(C2xSD16):16C10320,1574

Non-split extensions G=N.Q with N=C2×SD16 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×SD16).1C10 = C5×SD16⋊C4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16).1C10320,941
(C2×SD16).2C10 = C5×C8.2D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16).2C10320,998
(C2×SD16).3C10 = C5×D4.D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16).3C10320,962
(C2×SD16).4C10 = C5×Q8.D4φ: C10/C5C2 ⊆ Out C2×SD16160(C2xSD16).4C10320,965
(C2×SD16).5C10 = SD16×C20φ: trivial image160(C2xSD16).5C10320,939

׿
×
𝔽