Copied to
clipboard

G = C5×C85D4order 320 = 26·5

Direct product of C5 and C85D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C85D4, C4027D4, C209SD16, C85(C5×D4), C4⋊Q87C10, (C4×C8)⋊12C10, (C4×C40)⋊28C2, C41(C5×SD16), C4.1(D4×C10), C20.308(C2×D4), C41D4.6C10, (C2×C20).421D4, (C10×SD16)⋊31C2, (C2×SD16)⋊14C10, C42.79(C2×C10), C10.96(C2×SD16), C2.16(C10×SD16), C10.42(C41D4), (C4×C20).363C22, (C2×C40).438C22, (C2×C20).948C23, C22.113(D4×C10), (D4×C10).202C22, (Q8×C10).176C22, (C5×C4⋊Q8)⋊28C2, (C2×C4).77(C5×D4), C2.5(C5×C41D4), (C2×C8).94(C2×C10), (C2×D4).25(C2×C10), (C5×C41D4).13C2, (C2×C10).669(C2×D4), (C2×Q8).20(C2×C10), (C2×C4).123(C22×C10), SmallGroup(320,993)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C5×C85D4
C1C2C22C2×C4C2×C20D4×C10C10×SD16 — C5×C85D4
C1C2C2×C4 — C5×C85D4
C1C2×C10C4×C20 — C5×C85D4

Generators and relations for C5×C85D4
 G = < a,b,c,d | a5=b8=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b3, dcd=c-1 >

Subgroups: 290 in 142 conjugacy classes, 66 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C4⋊C4, C2×C8, SD16, C2×D4, C2×D4, C2×Q8, C20, C20, C2×C10, C2×C10, C4×C8, C41D4, C4⋊Q8, C2×SD16, C40, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C85D4, C4×C20, C5×C4⋊C4, C2×C40, C5×SD16, D4×C10, D4×C10, Q8×C10, C4×C40, C5×C41D4, C5×C4⋊Q8, C10×SD16, C5×C85D4
Quotients: C1, C2, C22, C5, D4, C23, C10, SD16, C2×D4, C2×C10, C41D4, C2×SD16, C5×D4, C22×C10, C85D4, C5×SD16, D4×C10, C5×C41D4, C10×SD16, C5×C85D4

Smallest permutation representation of C5×C85D4
On 160 points
Generators in S160
(1 94 54 86 46)(2 95 55 87 47)(3 96 56 88 48)(4 89 49 81 41)(5 90 50 82 42)(6 91 51 83 43)(7 92 52 84 44)(8 93 53 85 45)(9 115 139 17 131)(10 116 140 18 132)(11 117 141 19 133)(12 118 142 20 134)(13 119 143 21 135)(14 120 144 22 136)(15 113 137 23 129)(16 114 138 24 130)(25 121 155 33 147)(26 122 156 34 148)(27 123 157 35 149)(28 124 158 36 150)(29 125 159 37 151)(30 126 160 38 152)(31 127 153 39 145)(32 128 154 40 146)(57 75 107 67 98)(58 76 108 68 99)(59 77 109 69 100)(60 78 110 70 101)(61 79 111 71 102)(62 80 112 72 103)(63 73 105 65 104)(64 74 106 66 97)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 71 29 119)(2 72 30 120)(3 65 31 113)(4 66 32 114)(5 67 25 115)(6 68 26 116)(7 69 27 117)(8 70 28 118)(9 42 107 147)(10 43 108 148)(11 44 109 149)(12 45 110 150)(13 46 111 151)(14 47 112 152)(15 48 105 145)(16 41 106 146)(17 50 57 155)(18 51 58 156)(19 52 59 157)(20 53 60 158)(21 54 61 159)(22 55 62 160)(23 56 63 153)(24 49 64 154)(33 131 82 75)(34 132 83 76)(35 133 84 77)(36 134 85 78)(37 135 86 79)(38 136 87 80)(39 129 88 73)(40 130 81 74)(89 97 128 138)(90 98 121 139)(91 99 122 140)(92 100 123 141)(93 101 124 142)(94 102 125 143)(95 103 126 144)(96 104 127 137)
(1 119)(2 114)(3 117)(4 120)(5 115)(6 118)(7 113)(8 116)(9 42)(10 45)(11 48)(12 43)(13 46)(14 41)(15 44)(16 47)(17 50)(18 53)(19 56)(20 51)(21 54)(22 49)(23 52)(24 55)(25 67)(26 70)(27 65)(28 68)(29 71)(30 66)(31 69)(32 72)(33 75)(34 78)(35 73)(36 76)(37 79)(38 74)(39 77)(40 80)(57 155)(58 158)(59 153)(60 156)(61 159)(62 154)(63 157)(64 160)(81 136)(82 131)(83 134)(84 129)(85 132)(86 135)(87 130)(88 133)(89 144)(90 139)(91 142)(92 137)(93 140)(94 143)(95 138)(96 141)(97 126)(98 121)(99 124)(100 127)(101 122)(102 125)(103 128)(104 123)(105 149)(106 152)(107 147)(108 150)(109 145)(110 148)(111 151)(112 146)

G:=sub<Sym(160)| (1,94,54,86,46)(2,95,55,87,47)(3,96,56,88,48)(4,89,49,81,41)(5,90,50,82,42)(6,91,51,83,43)(7,92,52,84,44)(8,93,53,85,45)(9,115,139,17,131)(10,116,140,18,132)(11,117,141,19,133)(12,118,142,20,134)(13,119,143,21,135)(14,120,144,22,136)(15,113,137,23,129)(16,114,138,24,130)(25,121,155,33,147)(26,122,156,34,148)(27,123,157,35,149)(28,124,158,36,150)(29,125,159,37,151)(30,126,160,38,152)(31,127,153,39,145)(32,128,154,40,146)(57,75,107,67,98)(58,76,108,68,99)(59,77,109,69,100)(60,78,110,70,101)(61,79,111,71,102)(62,80,112,72,103)(63,73,105,65,104)(64,74,106,66,97), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,71,29,119)(2,72,30,120)(3,65,31,113)(4,66,32,114)(5,67,25,115)(6,68,26,116)(7,69,27,117)(8,70,28,118)(9,42,107,147)(10,43,108,148)(11,44,109,149)(12,45,110,150)(13,46,111,151)(14,47,112,152)(15,48,105,145)(16,41,106,146)(17,50,57,155)(18,51,58,156)(19,52,59,157)(20,53,60,158)(21,54,61,159)(22,55,62,160)(23,56,63,153)(24,49,64,154)(33,131,82,75)(34,132,83,76)(35,133,84,77)(36,134,85,78)(37,135,86,79)(38,136,87,80)(39,129,88,73)(40,130,81,74)(89,97,128,138)(90,98,121,139)(91,99,122,140)(92,100,123,141)(93,101,124,142)(94,102,125,143)(95,103,126,144)(96,104,127,137), (1,119)(2,114)(3,117)(4,120)(5,115)(6,118)(7,113)(8,116)(9,42)(10,45)(11,48)(12,43)(13,46)(14,41)(15,44)(16,47)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(25,67)(26,70)(27,65)(28,68)(29,71)(30,66)(31,69)(32,72)(33,75)(34,78)(35,73)(36,76)(37,79)(38,74)(39,77)(40,80)(57,155)(58,158)(59,153)(60,156)(61,159)(62,154)(63,157)(64,160)(81,136)(82,131)(83,134)(84,129)(85,132)(86,135)(87,130)(88,133)(89,144)(90,139)(91,142)(92,137)(93,140)(94,143)(95,138)(96,141)(97,126)(98,121)(99,124)(100,127)(101,122)(102,125)(103,128)(104,123)(105,149)(106,152)(107,147)(108,150)(109,145)(110,148)(111,151)(112,146)>;

G:=Group( (1,94,54,86,46)(2,95,55,87,47)(3,96,56,88,48)(4,89,49,81,41)(5,90,50,82,42)(6,91,51,83,43)(7,92,52,84,44)(8,93,53,85,45)(9,115,139,17,131)(10,116,140,18,132)(11,117,141,19,133)(12,118,142,20,134)(13,119,143,21,135)(14,120,144,22,136)(15,113,137,23,129)(16,114,138,24,130)(25,121,155,33,147)(26,122,156,34,148)(27,123,157,35,149)(28,124,158,36,150)(29,125,159,37,151)(30,126,160,38,152)(31,127,153,39,145)(32,128,154,40,146)(57,75,107,67,98)(58,76,108,68,99)(59,77,109,69,100)(60,78,110,70,101)(61,79,111,71,102)(62,80,112,72,103)(63,73,105,65,104)(64,74,106,66,97), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,71,29,119)(2,72,30,120)(3,65,31,113)(4,66,32,114)(5,67,25,115)(6,68,26,116)(7,69,27,117)(8,70,28,118)(9,42,107,147)(10,43,108,148)(11,44,109,149)(12,45,110,150)(13,46,111,151)(14,47,112,152)(15,48,105,145)(16,41,106,146)(17,50,57,155)(18,51,58,156)(19,52,59,157)(20,53,60,158)(21,54,61,159)(22,55,62,160)(23,56,63,153)(24,49,64,154)(33,131,82,75)(34,132,83,76)(35,133,84,77)(36,134,85,78)(37,135,86,79)(38,136,87,80)(39,129,88,73)(40,130,81,74)(89,97,128,138)(90,98,121,139)(91,99,122,140)(92,100,123,141)(93,101,124,142)(94,102,125,143)(95,103,126,144)(96,104,127,137), (1,119)(2,114)(3,117)(4,120)(5,115)(6,118)(7,113)(8,116)(9,42)(10,45)(11,48)(12,43)(13,46)(14,41)(15,44)(16,47)(17,50)(18,53)(19,56)(20,51)(21,54)(22,49)(23,52)(24,55)(25,67)(26,70)(27,65)(28,68)(29,71)(30,66)(31,69)(32,72)(33,75)(34,78)(35,73)(36,76)(37,79)(38,74)(39,77)(40,80)(57,155)(58,158)(59,153)(60,156)(61,159)(62,154)(63,157)(64,160)(81,136)(82,131)(83,134)(84,129)(85,132)(86,135)(87,130)(88,133)(89,144)(90,139)(91,142)(92,137)(93,140)(94,143)(95,138)(96,141)(97,126)(98,121)(99,124)(100,127)(101,122)(102,125)(103,128)(104,123)(105,149)(106,152)(107,147)(108,150)(109,145)(110,148)(111,151)(112,146) );

G=PermutationGroup([[(1,94,54,86,46),(2,95,55,87,47),(3,96,56,88,48),(4,89,49,81,41),(5,90,50,82,42),(6,91,51,83,43),(7,92,52,84,44),(8,93,53,85,45),(9,115,139,17,131),(10,116,140,18,132),(11,117,141,19,133),(12,118,142,20,134),(13,119,143,21,135),(14,120,144,22,136),(15,113,137,23,129),(16,114,138,24,130),(25,121,155,33,147),(26,122,156,34,148),(27,123,157,35,149),(28,124,158,36,150),(29,125,159,37,151),(30,126,160,38,152),(31,127,153,39,145),(32,128,154,40,146),(57,75,107,67,98),(58,76,108,68,99),(59,77,109,69,100),(60,78,110,70,101),(61,79,111,71,102),(62,80,112,72,103),(63,73,105,65,104),(64,74,106,66,97)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,71,29,119),(2,72,30,120),(3,65,31,113),(4,66,32,114),(5,67,25,115),(6,68,26,116),(7,69,27,117),(8,70,28,118),(9,42,107,147),(10,43,108,148),(11,44,109,149),(12,45,110,150),(13,46,111,151),(14,47,112,152),(15,48,105,145),(16,41,106,146),(17,50,57,155),(18,51,58,156),(19,52,59,157),(20,53,60,158),(21,54,61,159),(22,55,62,160),(23,56,63,153),(24,49,64,154),(33,131,82,75),(34,132,83,76),(35,133,84,77),(36,134,85,78),(37,135,86,79),(38,136,87,80),(39,129,88,73),(40,130,81,74),(89,97,128,138),(90,98,121,139),(91,99,122,140),(92,100,123,141),(93,101,124,142),(94,102,125,143),(95,103,126,144),(96,104,127,137)], [(1,119),(2,114),(3,117),(4,120),(5,115),(6,118),(7,113),(8,116),(9,42),(10,45),(11,48),(12,43),(13,46),(14,41),(15,44),(16,47),(17,50),(18,53),(19,56),(20,51),(21,54),(22,49),(23,52),(24,55),(25,67),(26,70),(27,65),(28,68),(29,71),(30,66),(31,69),(32,72),(33,75),(34,78),(35,73),(36,76),(37,79),(38,74),(39,77),(40,80),(57,155),(58,158),(59,153),(60,156),(61,159),(62,154),(63,157),(64,160),(81,136),(82,131),(83,134),(84,129),(85,132),(86,135),(87,130),(88,133),(89,144),(90,139),(91,142),(92,137),(93,140),(94,143),(95,138),(96,141),(97,126),(98,121),(99,124),(100,127),(101,122),(102,125),(103,128),(104,123),(105,149),(106,152),(107,147),(108,150),(109,145),(110,148),(111,151),(112,146)]])

110 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H5A5B5C5D8A···8H10A···10L10M···10T20A···20X20Y···20AF40A···40AF
order1222224···44455558···810···1010···1020···2020···2040···40
size1111882···28811112···21···18···82···28···82···2

110 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C5C10C10C10C10D4D4SD16C5×D4C5×D4C5×SD16
kernelC5×C85D4C4×C40C5×C41D4C5×C4⋊Q8C10×SD16C85D4C4×C8C41D4C4⋊Q8C2×SD16C40C2×C20C20C8C2×C4C4
# reps1111444441642816832

Matrix representation of C5×C85D4 in GL4(𝔽41) generated by

37000
03700
00180
00018
,
03000
263000
002626
001526
,
1000
0100
0001
00400
,
1000
14000
0001
0010
G:=sub<GL(4,GF(41))| [37,0,0,0,0,37,0,0,0,0,18,0,0,0,0,18],[0,26,0,0,30,30,0,0,0,0,26,15,0,0,26,26],[1,0,0,0,0,1,0,0,0,0,0,40,0,0,1,0],[1,1,0,0,0,40,0,0,0,0,0,1,0,0,1,0] >;

C5×C85D4 in GAP, Magma, Sage, TeX

C_5\times C_8\rtimes_5D_4
% in TeX

G:=Group("C5xC8:5D4");
// GroupNames label

G:=SmallGroup(320,993);
// by ID

G=gap.SmallGroup(320,993);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,288,1766,436,7004,172]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^3,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽