Copied to
clipboard

G = C5×D4.D4order 320 = 26·5

Direct product of C5 and D4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×D4.D4, C2012SD16, C4⋊C89C10, C4⋊Q82C10, D4.1(C5×D4), C42(C5×SD16), (C4×D4).6C10, (C5×D4).26D4, C4.33(D4×C10), (D4×C20).21C2, C20.394(C2×D4), (C2×C20).323D4, C2.8(C10×SD16), Q8⋊C411C10, C42.16(C2×C10), (C2×SD16).3C10, (C10×SD16).8C2, C10.88(C2×SD16), C22.85(D4×C10), C20.343(C4○D4), (C2×C20).920C23, (C2×C40).300C22, (C4×C20).258C22, C10.144(C4⋊D4), (D4×C10).297C22, (Q8×C10).159C22, C10.134(C8.C22), (C5×C4⋊C8)⋊28C2, (C5×C4⋊Q8)⋊23C2, C4.42(C5×C4○D4), C4⋊C4.53(C2×C10), (C2×C8).37(C2×C10), (C2×C4).129(C5×D4), C2.13(C5×C4⋊D4), (C2×Q8).5(C2×C10), C2.9(C5×C8.C22), (C5×Q8⋊C4)⋊33C2, (C2×D4).56(C2×C10), (C2×C10).641(C2×D4), (C5×C4⋊C4).374C22, (C2×C4).95(C22×C10), SmallGroup(320,962)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C5×D4.D4
C1C2C4C2×C4C2×C20Q8×C10C5×C4⋊Q8 — C5×D4.D4
C1C2C2×C4 — C5×D4.D4
C1C2×C10C4×C20 — C5×D4.D4

Generators and relations for C5×D4.D4
 G = < a,b,c,d,e | a5=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >

Subgroups: 218 in 120 conjugacy classes, 58 normal (34 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C20, C20, C20, C2×C10, C2×C10, Q8⋊C4, C4⋊C8, C4×D4, C4⋊Q8, C2×SD16, C40, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×C10, D4.D4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×C40, C5×SD16, C22×C20, D4×C10, Q8×C10, C5×Q8⋊C4, C5×C4⋊C8, D4×C20, C5×C4⋊Q8, C10×SD16, C5×D4.D4
Quotients: C1, C2, C22, C5, D4, C23, C10, SD16, C2×D4, C4○D4, C2×C10, C4⋊D4, C2×SD16, C8.C22, C5×D4, C22×C10, D4.D4, C5×SD16, D4×C10, C5×C4○D4, C5×C4⋊D4, C10×SD16, C5×C8.C22, C5×D4.D4

Smallest permutation representation of C5×D4.D4
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 37 12 66)(2 38 13 67)(3 39 14 68)(4 40 15 69)(5 36 11 70)(6 23 144 156)(7 24 145 157)(8 25 141 158)(9 21 142 159)(10 22 143 160)(16 33 137 154)(17 34 138 155)(18 35 139 151)(19 31 140 152)(20 32 136 153)(26 43 50 52)(27 44 46 53)(28 45 47 54)(29 41 48 55)(30 42 49 51)(56 87 94 73)(57 88 95 74)(58 89 91 75)(59 90 92 71)(60 86 93 72)(61 107 82 78)(62 108 83 79)(63 109 84 80)(64 110 85 76)(65 106 81 77)(96 113 134 127)(97 114 135 128)(98 115 131 129)(99 111 132 130)(100 112 133 126)(101 118 122 147)(102 119 123 148)(103 120 124 149)(104 116 125 150)(105 117 121 146)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 144)(7 145)(8 141)(9 142)(10 143)(11 36)(12 37)(13 38)(14 39)(15 40)(16 137)(17 138)(18 139)(19 140)(20 136)(26 43)(27 44)(28 45)(29 41)(30 42)(46 53)(47 54)(48 55)(49 51)(50 52)(56 73)(57 74)(58 75)(59 71)(60 72)(61 78)(62 79)(63 80)(64 76)(65 77)(81 106)(82 107)(83 108)(84 109)(85 110)(86 93)(87 94)(88 95)(89 91)(90 92)(96 134)(97 135)(98 131)(99 132)(100 133)(101 122)(102 123)(103 124)(104 125)(105 121)
(1 56 45 81)(2 57 41 82)(3 58 42 83)(4 59 43 84)(5 60 44 85)(6 100 140 125)(7 96 136 121)(8 97 137 122)(9 98 138 123)(10 99 139 124)(11 93 53 64)(12 94 54 65)(13 95 55 61)(14 91 51 62)(15 92 52 63)(16 101 141 135)(17 102 142 131)(18 103 143 132)(19 104 144 133)(20 105 145 134)(21 115 155 148)(22 111 151 149)(23 112 152 150)(24 113 153 146)(25 114 154 147)(26 109 69 71)(27 110 70 72)(28 106 66 73)(29 107 67 74)(30 108 68 75)(31 116 156 126)(32 117 157 127)(33 118 158 128)(34 119 159 129)(35 120 160 130)(36 86 46 76)(37 87 47 77)(38 88 48 78)(39 89 49 79)(40 90 50 80)
(1 20 12 136)(2 16 13 137)(3 17 14 138)(4 18 15 139)(5 19 11 140)(6 44 144 53)(7 45 145 54)(8 41 141 55)(9 42 142 51)(10 43 143 52)(21 30 159 49)(22 26 160 50)(23 27 156 46)(24 28 157 47)(25 29 158 48)(31 36 152 70)(32 37 153 66)(33 38 154 67)(34 39 155 68)(35 40 151 69)(56 134 94 96)(57 135 95 97)(58 131 91 98)(59 132 92 99)(60 133 93 100)(61 122 82 101)(62 123 83 102)(63 124 84 103)(64 125 85 104)(65 121 81 105)(71 130 90 111)(72 126 86 112)(73 127 87 113)(74 128 88 114)(75 129 89 115)(76 150 110 116)(77 146 106 117)(78 147 107 118)(79 148 108 119)(80 149 109 120)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,37,12,66)(2,38,13,67)(3,39,14,68)(4,40,15,69)(5,36,11,70)(6,23,144,156)(7,24,145,157)(8,25,141,158)(9,21,142,159)(10,22,143,160)(16,33,137,154)(17,34,138,155)(18,35,139,151)(19,31,140,152)(20,32,136,153)(26,43,50,52)(27,44,46,53)(28,45,47,54)(29,41,48,55)(30,42,49,51)(56,87,94,73)(57,88,95,74)(58,89,91,75)(59,90,92,71)(60,86,93,72)(61,107,82,78)(62,108,83,79)(63,109,84,80)(64,110,85,76)(65,106,81,77)(96,113,134,127)(97,114,135,128)(98,115,131,129)(99,111,132,130)(100,112,133,126)(101,118,122,147)(102,119,123,148)(103,120,124,149)(104,116,125,150)(105,117,121,146), (1,66)(2,67)(3,68)(4,69)(5,70)(6,144)(7,145)(8,141)(9,142)(10,143)(11,36)(12,37)(13,38)(14,39)(15,40)(16,137)(17,138)(18,139)(19,140)(20,136)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121), (1,56,45,81)(2,57,41,82)(3,58,42,83)(4,59,43,84)(5,60,44,85)(6,100,140,125)(7,96,136,121)(8,97,137,122)(9,98,138,123)(10,99,139,124)(11,93,53,64)(12,94,54,65)(13,95,55,61)(14,91,51,62)(15,92,52,63)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,115,155,148)(22,111,151,149)(23,112,152,150)(24,113,153,146)(25,114,154,147)(26,109,69,71)(27,110,70,72)(28,106,66,73)(29,107,67,74)(30,108,68,75)(31,116,156,126)(32,117,157,127)(33,118,158,128)(34,119,159,129)(35,120,160,130)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80), (1,20,12,136)(2,16,13,137)(3,17,14,138)(4,18,15,139)(5,19,11,140)(6,44,144,53)(7,45,145,54)(8,41,141,55)(9,42,142,51)(10,43,143,52)(21,30,159,49)(22,26,160,50)(23,27,156,46)(24,28,157,47)(25,29,158,48)(31,36,152,70)(32,37,153,66)(33,38,154,67)(34,39,155,68)(35,40,151,69)(56,134,94,96)(57,135,95,97)(58,131,91,98)(59,132,92,99)(60,133,93,100)(61,122,82,101)(62,123,83,102)(63,124,84,103)(64,125,85,104)(65,121,81,105)(71,130,90,111)(72,126,86,112)(73,127,87,113)(74,128,88,114)(75,129,89,115)(76,150,110,116)(77,146,106,117)(78,147,107,118)(79,148,108,119)(80,149,109,120)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,37,12,66)(2,38,13,67)(3,39,14,68)(4,40,15,69)(5,36,11,70)(6,23,144,156)(7,24,145,157)(8,25,141,158)(9,21,142,159)(10,22,143,160)(16,33,137,154)(17,34,138,155)(18,35,139,151)(19,31,140,152)(20,32,136,153)(26,43,50,52)(27,44,46,53)(28,45,47,54)(29,41,48,55)(30,42,49,51)(56,87,94,73)(57,88,95,74)(58,89,91,75)(59,90,92,71)(60,86,93,72)(61,107,82,78)(62,108,83,79)(63,109,84,80)(64,110,85,76)(65,106,81,77)(96,113,134,127)(97,114,135,128)(98,115,131,129)(99,111,132,130)(100,112,133,126)(101,118,122,147)(102,119,123,148)(103,120,124,149)(104,116,125,150)(105,117,121,146), (1,66)(2,67)(3,68)(4,69)(5,70)(6,144)(7,145)(8,141)(9,142)(10,143)(11,36)(12,37)(13,38)(14,39)(15,40)(16,137)(17,138)(18,139)(19,140)(20,136)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121), (1,56,45,81)(2,57,41,82)(3,58,42,83)(4,59,43,84)(5,60,44,85)(6,100,140,125)(7,96,136,121)(8,97,137,122)(9,98,138,123)(10,99,139,124)(11,93,53,64)(12,94,54,65)(13,95,55,61)(14,91,51,62)(15,92,52,63)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,115,155,148)(22,111,151,149)(23,112,152,150)(24,113,153,146)(25,114,154,147)(26,109,69,71)(27,110,70,72)(28,106,66,73)(29,107,67,74)(30,108,68,75)(31,116,156,126)(32,117,157,127)(33,118,158,128)(34,119,159,129)(35,120,160,130)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80), (1,20,12,136)(2,16,13,137)(3,17,14,138)(4,18,15,139)(5,19,11,140)(6,44,144,53)(7,45,145,54)(8,41,141,55)(9,42,142,51)(10,43,143,52)(21,30,159,49)(22,26,160,50)(23,27,156,46)(24,28,157,47)(25,29,158,48)(31,36,152,70)(32,37,153,66)(33,38,154,67)(34,39,155,68)(35,40,151,69)(56,134,94,96)(57,135,95,97)(58,131,91,98)(59,132,92,99)(60,133,93,100)(61,122,82,101)(62,123,83,102)(63,124,84,103)(64,125,85,104)(65,121,81,105)(71,130,90,111)(72,126,86,112)(73,127,87,113)(74,128,88,114)(75,129,89,115)(76,150,110,116)(77,146,106,117)(78,147,107,118)(79,148,108,119)(80,149,109,120) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,37,12,66),(2,38,13,67),(3,39,14,68),(4,40,15,69),(5,36,11,70),(6,23,144,156),(7,24,145,157),(8,25,141,158),(9,21,142,159),(10,22,143,160),(16,33,137,154),(17,34,138,155),(18,35,139,151),(19,31,140,152),(20,32,136,153),(26,43,50,52),(27,44,46,53),(28,45,47,54),(29,41,48,55),(30,42,49,51),(56,87,94,73),(57,88,95,74),(58,89,91,75),(59,90,92,71),(60,86,93,72),(61,107,82,78),(62,108,83,79),(63,109,84,80),(64,110,85,76),(65,106,81,77),(96,113,134,127),(97,114,135,128),(98,115,131,129),(99,111,132,130),(100,112,133,126),(101,118,122,147),(102,119,123,148),(103,120,124,149),(104,116,125,150),(105,117,121,146)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,144),(7,145),(8,141),(9,142),(10,143),(11,36),(12,37),(13,38),(14,39),(15,40),(16,137),(17,138),(18,139),(19,140),(20,136),(26,43),(27,44),(28,45),(29,41),(30,42),(46,53),(47,54),(48,55),(49,51),(50,52),(56,73),(57,74),(58,75),(59,71),(60,72),(61,78),(62,79),(63,80),(64,76),(65,77),(81,106),(82,107),(83,108),(84,109),(85,110),(86,93),(87,94),(88,95),(89,91),(90,92),(96,134),(97,135),(98,131),(99,132),(100,133),(101,122),(102,123),(103,124),(104,125),(105,121)], [(1,56,45,81),(2,57,41,82),(3,58,42,83),(4,59,43,84),(5,60,44,85),(6,100,140,125),(7,96,136,121),(8,97,137,122),(9,98,138,123),(10,99,139,124),(11,93,53,64),(12,94,54,65),(13,95,55,61),(14,91,51,62),(15,92,52,63),(16,101,141,135),(17,102,142,131),(18,103,143,132),(19,104,144,133),(20,105,145,134),(21,115,155,148),(22,111,151,149),(23,112,152,150),(24,113,153,146),(25,114,154,147),(26,109,69,71),(27,110,70,72),(28,106,66,73),(29,107,67,74),(30,108,68,75),(31,116,156,126),(32,117,157,127),(33,118,158,128),(34,119,159,129),(35,120,160,130),(36,86,46,76),(37,87,47,77),(38,88,48,78),(39,89,49,79),(40,90,50,80)], [(1,20,12,136),(2,16,13,137),(3,17,14,138),(4,18,15,139),(5,19,11,140),(6,44,144,53),(7,45,145,54),(8,41,141,55),(9,42,142,51),(10,43,143,52),(21,30,159,49),(22,26,160,50),(23,27,156,46),(24,28,157,47),(25,29,158,48),(31,36,152,70),(32,37,153,66),(33,38,154,67),(34,39,155,68),(35,40,151,69),(56,134,94,96),(57,135,95,97),(58,131,91,98),(59,132,92,99),(60,133,93,100),(61,122,82,101),(62,123,83,102),(63,124,84,103),(64,125,85,104),(65,121,81,105),(71,130,90,111),(72,126,86,112),(73,127,87,113),(74,128,88,114),(75,129,89,115),(76,150,110,116),(77,146,106,117),(78,147,107,118),(79,148,108,119),(80,149,109,120)]])

95 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B5C5D8A8B8C8D10A···10L10M···10T20A···20P20Q···20AB20AC···20AJ40A···40P
order1222224444444445555888810···1010···1020···2020···2020···2040···40
size111144222244488111144441···14···42···24···48···84···4

95 irreducible representations

dim1111111111112222222244
type++++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4SD16C4○D4C5×D4C5×D4C5×SD16C5×C4○D4C8.C22C5×C8.C22
kernelC5×D4.D4C5×Q8⋊C4C5×C4⋊C8D4×C20C5×C4⋊Q8C10×SD16D4.D4Q8⋊C4C4⋊C8C4×D4C4⋊Q8C2×SD16C2×C20C5×D4C20C20C2×C4D4C4C4C10C2
# reps12111248444822428816814

Matrix representation of C5×D4.D4 in GL4(𝔽41) generated by

1000
0100
00160
00016
,
0100
40000
0010
0001
,
0100
1000
0010
0001
,
40000
04000
004039
0011
,
152600
262600
0010
004040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[0,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,40,1,0,0,39,1],[15,26,0,0,26,26,0,0,0,0,1,40,0,0,0,40] >;

C5×D4.D4 in GAP, Magma, Sage, TeX

C_5\times D_4.D_4
% in TeX

G:=Group("C5xD4.D4");
// GroupNames label

G:=SmallGroup(320,962);
// by ID

G=gap.SmallGroup(320,962);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,1120,589,288,1766,10085,2539,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽