Extensions 1→N→G→Q→1 with N=Q8×C10 and Q=C4

Direct product G=N×Q with N=Q8×C10 and Q=C4
dρLabelID
Q8×C2×C20320Q8xC2xC20320,1518

Semidirect products G=N:Q with N=Q8×C10 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×C10)⋊1C4 = D10.Q16φ: C4/C1C4 ⊆ Out Q8×C1080(Q8xC10):1C4320,264
(Q8×C10)⋊2C4 = (C2×Q8)⋊F5φ: C4/C1C4 ⊆ Out Q8×C10808+(Q8xC10):2C4320,266
(Q8×C10)⋊3C4 = C2×Q8⋊F5φ: C4/C1C4 ⊆ Out Q8×C1080(Q8xC10):3C4320,1119
(Q8×C10)⋊4C4 = (C2×Q8)⋊4F5φ: C4/C1C4 ⊆ Out Q8×C10808-(Q8xC10):4C4320,1120
(Q8×C10)⋊5C4 = C2×Q82F5φ: C4/C1C4 ⊆ Out Q8×C1080(Q8xC10):5C4320,1121
(Q8×C10)⋊6C4 = (C2×Q8)⋊6F5φ: C4/C1C4 ⊆ Out Q8×C10808+(Q8xC10):6C4320,1122
(Q8×C10)⋊7C4 = (C2×Q8)⋊7F5φ: C4/C1C4 ⊆ Out Q8×C10808+(Q8xC10):7C4320,1123
(Q8×C10)⋊8C4 = (C2×F5)⋊Q8φ: C4/C1C4 ⊆ Out Q8×C1080(Q8xC10):8C4320,1128
(Q8×C10)⋊9C4 = C2×Q8×F5φ: C4/C1C4 ⊆ Out Q8×C1080(Q8xC10):9C4320,1599
(Q8×C10)⋊10C4 = D5.2- 1+4φ: C4/C1C4 ⊆ Out Q8×C10808-(Q8xC10):10C4320,1600
(Q8×C10)⋊11C4 = C10.29C4≀C2φ: C4/C1C4 ⊆ Out Q8×C1080(Q8xC10):11C4320,96
(Q8×C10)⋊12C4 = C42⋊Dic5φ: C4/C1C4 ⊆ Out Q8×C10804(Q8xC10):12C4320,99
(Q8×C10)⋊13C4 = C5×C23.31D4φ: C4/C1C4 ⊆ Out Q8×C1080(Q8xC10):13C4320,133
(Q8×C10)⋊14C4 = C5×C423C4φ: C4/C1C4 ⊆ Out Q8×C10804(Q8xC10):14C4320,159
(Q8×C10)⋊15C4 = C2×Q8⋊Dic5φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10):15C4320,851
(Q8×C10)⋊16C4 = (Q8×C10)⋊16C4φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10):16C4320,852
(Q8×C10)⋊17C4 = (Q8×C10)⋊17C4φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10):17C4320,857
(Q8×C10)⋊18C4 = C2×D42Dic5φ: C4/C2C2 ⊆ Out Q8×C1080(Q8xC10):18C4320,862
(Q8×C10)⋊19C4 = (D4×C10)⋊21C4φ: C4/C2C2 ⊆ Out Q8×C10804(Q8xC10):19C4320,863
(Q8×C10)⋊20C4 = (D4×C10)⋊22C4φ: C4/C2C2 ⊆ Out Q8×C10804(Q8xC10):20C4320,867
(Q8×C10)⋊21C4 = C2×Q8×Dic5φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10):21C4320,1483
(Q8×C10)⋊22C4 = C10.422- 1+4φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10):22C4320,1484
(Q8×C10)⋊23C4 = C5×C23.67C23φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10):23C4320,892
(Q8×C10)⋊24C4 = C5×C23.C23φ: C4/C2C2 ⊆ Out Q8×C10804(Q8xC10):24C4320,911
(Q8×C10)⋊25C4 = C10×Q8⋊C4φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10):25C4320,916
(Q8×C10)⋊26C4 = C5×C23.38D4φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10):26C4320,920
(Q8×C10)⋊27C4 = C10×C4≀C2φ: C4/C2C2 ⊆ Out Q8×C1080(Q8xC10):27C4320,921
(Q8×C10)⋊28C4 = C5×C42⋊C22φ: C4/C2C2 ⊆ Out Q8×C10804(Q8xC10):28C4320,922
(Q8×C10)⋊29C4 = C5×C23.32C23φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10):29C4320,1521

Non-split extensions G=N.Q with N=Q8×C10 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×C10).1C4 = (C2×Q8).F5φ: C4/C1C4 ⊆ Out Q8×C10160(Q8xC10).1C4320,265
(Q8×C10).2C4 = (Q8×C10).C4φ: C4/C1C4 ⊆ Out Q8×C10808-(Q8xC10).2C4320,267
(Q8×C10).3C4 = Dic5.Q16φ: C4/C1C4 ⊆ Out Q8×C10320(Q8xC10).3C4320,269
(Q8×C10).4C4 = Dic5.12Q16φ: C4/C1C4 ⊆ Out Q8×C10320(Q8xC10).4C4320,268
(Q8×C10).5C4 = Q8×C5⋊C8φ: C4/C1C4 ⊆ Out Q8×C10320(Q8xC10).5C4320,1124
(Q8×C10).6C4 = (C2×Q8).5F5φ: C4/C1C4 ⊆ Out Q8×C10160(Q8xC10).6C4320,1125
(Q8×C10).7C4 = C20.6M4(2)φ: C4/C1C4 ⊆ Out Q8×C10320(Q8xC10).7C4320,1126
(Q8×C10).8C4 = (C2×Q8).7F5φ: C4/C1C4 ⊆ Out Q8×C10808-(Q8xC10).8C4320,1127
(Q8×C10).9C4 = C2×Q8.F5φ: C4/C1C4 ⊆ Out Q8×C10160(Q8xC10).9C4320,1597
(Q8×C10).10C4 = Dic5.20C24φ: C4/C1C4 ⊆ Out Q8×C10808+(Q8xC10).10C4320,1598
(Q8×C10).11C4 = C42.7D10φ: C4/C1C4 ⊆ Out Q8×C10160(Q8xC10).11C4320,98
(Q8×C10).12C4 = C20.5Q16φ: C4/C1C4 ⊆ Out Q8×C10320(Q8xC10).12C4320,104
(Q8×C10).13C4 = C42.3Dic5φ: C4/C1C4 ⊆ Out Q8×C10804(Q8xC10).13C4320,106
(Q8×C10).14C4 = C5×C42.C22φ: C4/C1C4 ⊆ Out Q8×C10160(Q8xC10).14C4320,134
(Q8×C10).15C4 = C5×C4.6Q16φ: C4/C1C4 ⊆ Out Q8×C10320(Q8xC10).15C4320,138
(Q8×C10).16C4 = C5×C42.3C4φ: C4/C1C4 ⊆ Out Q8×C10804(Q8xC10).16C4320,161
(Q8×C10).17C4 = C20.26Q16φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10).17C4320,93
(Q8×C10).18C4 = Q8×C52C8φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10).18C4320,650
(Q8×C10).19C4 = C42.210D10φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10).19C4320,651
(Q8×C10).20C4 = C2×C20.10D4φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10).20C4320,853
(Q8×C10).21C4 = (D4×C10).24C4φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10).21C4320,861
(Q8×C10).22C4 = C2×D4.Dic5φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10).22C4320,1490
(Q8×C10).23C4 = C20.76C24φ: C4/C2C2 ⊆ Out Q8×C10804(Q8xC10).23C4320,1491
(Q8×C10).24C4 = C5×Q8⋊C8φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10).24C4320,131
(Q8×C10).25C4 = C5×(C22×C8)⋊C2φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10).25C4320,909
(Q8×C10).26C4 = C10×C4.10D4φ: C4/C2C2 ⊆ Out Q8×C10160(Q8xC10).26C4320,913
(Q8×C10).27C4 = C5×C84Q8φ: C4/C2C2 ⊆ Out Q8×C10320(Q8xC10).27C4320,947
(Q8×C10).28C4 = C5×Q8○M4(2)φ: C4/C2C2 ⊆ Out Q8×C10804(Q8xC10).28C4320,1570
(Q8×C10).29C4 = Q8×C40φ: trivial image320(Q8xC10).29C4320,946
(Q8×C10).30C4 = C10×C8○D4φ: trivial image160(Q8xC10).30C4320,1569

׿
×
𝔽