metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×Q8).5F5, (C2×D20).9C4, (C4×D5).45D4, (Q8×C10).6C4, D10⋊C8⋊4C2, C2.8(Q8.F5), C10.23(C8○D4), C4.21(C22⋊F5), C20.21(C22⋊C4), Dic5.113(C2×D4), D10.16(C22⋊C4), C22.97(C22×F5), (C2×Dic5).357C23, (C2×D5⋊C8)⋊3C2, (C2×C4.F5)⋊4C2, (C2×C4).41(C2×F5), (C2×C20).26(C2×C4), (C2×C5⋊C8).13C22, (C2×C4×D5).62C22, C2.31(C2×C22⋊F5), C5⋊3((C22×C8)⋊C2), C10.30(C2×C22⋊C4), (C2×C10).86(C22×C4), (C2×Q8⋊2D5).12C2, (C22×D5).58(C2×C4), SmallGroup(320,1125)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C2×D5⋊C8 — (C2×Q8).5F5 |
Generators and relations for (C2×Q8).5F5
G = < a,b,c,d,e | a2=b4=d5=1, c2=e4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, ebe-1=ab-1, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 650 in 158 conjugacy classes, 52 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C22⋊C8, C22×C8, C2×M4(2), C2×C4○D4, C5⋊C8, C4×D5, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22×D5, (C22×C8)⋊C2, D5⋊C8, C4.F5, C2×C5⋊C8, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, Q8⋊2D5, Q8×C10, D10⋊C8, C2×D5⋊C8, C2×C4.F5, C2×Q8⋊2D5, (C2×Q8).5F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, F5, C2×C22⋊C4, C8○D4, C2×F5, (C22×C8)⋊C2, C22⋊F5, C22×F5, Q8.F5, C2×C22⋊F5, (C2×Q8).5F5
(1 61)(2 62)(3 63)(4 64)(5 57)(6 58)(7 59)(8 60)(9 76)(10 77)(11 78)(12 79)(13 80)(14 73)(15 74)(16 75)(17 115)(18 116)(19 117)(20 118)(21 119)(22 120)(23 113)(24 114)(25 121)(26 122)(27 123)(28 124)(29 125)(30 126)(31 127)(32 128)(33 158)(34 159)(35 160)(36 153)(37 154)(38 155)(39 156)(40 157)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 97)(56 98)(65 108)(66 109)(67 110)(68 111)(69 112)(70 105)(71 106)(72 107)(81 90)(82 91)(83 92)(84 93)(85 94)(86 95)(87 96)(88 89)(129 152)(130 145)(131 146)(132 147)(133 148)(134 149)(135 150)(136 151)
(1 102 5 98)(2 49 6 53)(3 104 7 100)(4 51 8 55)(9 122 13 126)(10 31 14 27)(11 124 15 128)(12 25 16 29)(17 131 21 135)(18 151 22 147)(19 133 23 129)(20 145 24 149)(26 80 30 76)(28 74 32 78)(33 65 37 69)(34 105 38 109)(35 67 39 71)(36 107 40 111)(41 83 45 87)(42 89 46 93)(43 85 47 81)(44 91 48 95)(50 63 54 59)(52 57 56 61)(58 103 62 99)(60 97 64 101)(66 159 70 155)(68 153 72 157)(73 123 77 127)(75 125 79 121)(82 144 86 140)(84 138 88 142)(90 139 94 143)(92 141 96 137)(106 160 110 156)(108 154 112 158)(113 152 117 148)(114 134 118 130)(115 146 119 150)(116 136 120 132)
(1 104 5 100)(2 97 6 101)(3 98 7 102)(4 99 8 103)(9 108 13 112)(10 109 14 105)(11 110 15 106)(12 111 16 107)(17 48 21 44)(18 41 22 45)(19 42 23 46)(20 43 24 47)(25 40 29 36)(26 33 30 37)(27 34 31 38)(28 35 32 39)(49 60 53 64)(50 61 54 57)(51 62 55 58)(52 63 56 59)(65 80 69 76)(66 73 70 77)(67 74 71 78)(68 75 72 79)(81 149 85 145)(82 150 86 146)(83 151 87 147)(84 152 88 148)(89 133 93 129)(90 134 94 130)(91 135 95 131)(92 136 96 132)(113 142 117 138)(114 143 118 139)(115 144 119 140)(116 137 120 141)(121 157 125 153)(122 158 126 154)(123 159 127 155)(124 160 128 156)
(1 12 132 143 38)(2 144 13 39 133)(3 40 137 134 14)(4 135 33 15 138)(5 16 136 139 34)(6 140 9 35 129)(7 36 141 130 10)(8 131 37 11 142)(17 65 128 88 51)(18 81 66 52 121)(19 53 82 122 67)(20 123 54 68 83)(21 69 124 84 55)(22 85 70 56 125)(23 49 86 126 71)(24 127 50 72 87)(25 116 90 109 102)(26 110 117 103 91)(27 104 111 92 118)(28 93 97 119 112)(29 120 94 105 98)(30 106 113 99 95)(31 100 107 96 114)(32 89 101 115 108)(41 149 73 63 157)(42 64 150 158 74)(43 159 57 75 151)(44 76 160 152 58)(45 145 77 59 153)(46 60 146 154 78)(47 155 61 79 147)(48 80 156 148 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,113)(24,114)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,158)(34,159)(35,160)(36,153)(37,154)(38,155)(39,156)(40,157)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(65,108)(66,109)(67,110)(68,111)(69,112)(70,105)(71,106)(72,107)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89)(129,152)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151), (1,102,5,98)(2,49,6,53)(3,104,7,100)(4,51,8,55)(9,122,13,126)(10,31,14,27)(11,124,15,128)(12,25,16,29)(17,131,21,135)(18,151,22,147)(19,133,23,129)(20,145,24,149)(26,80,30,76)(28,74,32,78)(33,65,37,69)(34,105,38,109)(35,67,39,71)(36,107,40,111)(41,83,45,87)(42,89,46,93)(43,85,47,81)(44,91,48,95)(50,63,54,59)(52,57,56,61)(58,103,62,99)(60,97,64,101)(66,159,70,155)(68,153,72,157)(73,123,77,127)(75,125,79,121)(82,144,86,140)(84,138,88,142)(90,139,94,143)(92,141,96,137)(106,160,110,156)(108,154,112,158)(113,152,117,148)(114,134,118,130)(115,146,119,150)(116,136,120,132), (1,104,5,100)(2,97,6,101)(3,98,7,102)(4,99,8,103)(9,108,13,112)(10,109,14,105)(11,110,15,106)(12,111,16,107)(17,48,21,44)(18,41,22,45)(19,42,23,46)(20,43,24,47)(25,40,29,36)(26,33,30,37)(27,34,31,38)(28,35,32,39)(49,60,53,64)(50,61,54,57)(51,62,55,58)(52,63,56,59)(65,80,69,76)(66,73,70,77)(67,74,71,78)(68,75,72,79)(81,149,85,145)(82,150,86,146)(83,151,87,147)(84,152,88,148)(89,133,93,129)(90,134,94,130)(91,135,95,131)(92,136,96,132)(113,142,117,138)(114,143,118,139)(115,144,119,140)(116,137,120,141)(121,157,125,153)(122,158,126,154)(123,159,127,155)(124,160,128,156), (1,12,132,143,38)(2,144,13,39,133)(3,40,137,134,14)(4,135,33,15,138)(5,16,136,139,34)(6,140,9,35,129)(7,36,141,130,10)(8,131,37,11,142)(17,65,128,88,51)(18,81,66,52,121)(19,53,82,122,67)(20,123,54,68,83)(21,69,124,84,55)(22,85,70,56,125)(23,49,86,126,71)(24,127,50,72,87)(25,116,90,109,102)(26,110,117,103,91)(27,104,111,92,118)(28,93,97,119,112)(29,120,94,105,98)(30,106,113,99,95)(31,100,107,96,114)(32,89,101,115,108)(41,149,73,63,157)(42,64,150,158,74)(43,159,57,75,151)(44,76,160,152,58)(45,145,77,59,153)(46,60,146,154,78)(47,155,61,79,147)(48,80,156,148,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,76)(10,77)(11,78)(12,79)(13,80)(14,73)(15,74)(16,75)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,113)(24,114)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,158)(34,159)(35,160)(36,153)(37,154)(38,155)(39,156)(40,157)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,97)(56,98)(65,108)(66,109)(67,110)(68,111)(69,112)(70,105)(71,106)(72,107)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89)(129,152)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151), (1,102,5,98)(2,49,6,53)(3,104,7,100)(4,51,8,55)(9,122,13,126)(10,31,14,27)(11,124,15,128)(12,25,16,29)(17,131,21,135)(18,151,22,147)(19,133,23,129)(20,145,24,149)(26,80,30,76)(28,74,32,78)(33,65,37,69)(34,105,38,109)(35,67,39,71)(36,107,40,111)(41,83,45,87)(42,89,46,93)(43,85,47,81)(44,91,48,95)(50,63,54,59)(52,57,56,61)(58,103,62,99)(60,97,64,101)(66,159,70,155)(68,153,72,157)(73,123,77,127)(75,125,79,121)(82,144,86,140)(84,138,88,142)(90,139,94,143)(92,141,96,137)(106,160,110,156)(108,154,112,158)(113,152,117,148)(114,134,118,130)(115,146,119,150)(116,136,120,132), (1,104,5,100)(2,97,6,101)(3,98,7,102)(4,99,8,103)(9,108,13,112)(10,109,14,105)(11,110,15,106)(12,111,16,107)(17,48,21,44)(18,41,22,45)(19,42,23,46)(20,43,24,47)(25,40,29,36)(26,33,30,37)(27,34,31,38)(28,35,32,39)(49,60,53,64)(50,61,54,57)(51,62,55,58)(52,63,56,59)(65,80,69,76)(66,73,70,77)(67,74,71,78)(68,75,72,79)(81,149,85,145)(82,150,86,146)(83,151,87,147)(84,152,88,148)(89,133,93,129)(90,134,94,130)(91,135,95,131)(92,136,96,132)(113,142,117,138)(114,143,118,139)(115,144,119,140)(116,137,120,141)(121,157,125,153)(122,158,126,154)(123,159,127,155)(124,160,128,156), (1,12,132,143,38)(2,144,13,39,133)(3,40,137,134,14)(4,135,33,15,138)(5,16,136,139,34)(6,140,9,35,129)(7,36,141,130,10)(8,131,37,11,142)(17,65,128,88,51)(18,81,66,52,121)(19,53,82,122,67)(20,123,54,68,83)(21,69,124,84,55)(22,85,70,56,125)(23,49,86,126,71)(24,127,50,72,87)(25,116,90,109,102)(26,110,117,103,91)(27,104,111,92,118)(28,93,97,119,112)(29,120,94,105,98)(30,106,113,99,95)(31,100,107,96,114)(32,89,101,115,108)(41,149,73,63,157)(42,64,150,158,74)(43,159,57,75,151)(44,76,160,152,58)(45,145,77,59,153)(46,60,146,154,78)(47,155,61,79,147)(48,80,156,148,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,61),(2,62),(3,63),(4,64),(5,57),(6,58),(7,59),(8,60),(9,76),(10,77),(11,78),(12,79),(13,80),(14,73),(15,74),(16,75),(17,115),(18,116),(19,117),(20,118),(21,119),(22,120),(23,113),(24,114),(25,121),(26,122),(27,123),(28,124),(29,125),(30,126),(31,127),(32,128),(33,158),(34,159),(35,160),(36,153),(37,154),(38,155),(39,156),(40,157),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,97),(56,98),(65,108),(66,109),(67,110),(68,111),(69,112),(70,105),(71,106),(72,107),(81,90),(82,91),(83,92),(84,93),(85,94),(86,95),(87,96),(88,89),(129,152),(130,145),(131,146),(132,147),(133,148),(134,149),(135,150),(136,151)], [(1,102,5,98),(2,49,6,53),(3,104,7,100),(4,51,8,55),(9,122,13,126),(10,31,14,27),(11,124,15,128),(12,25,16,29),(17,131,21,135),(18,151,22,147),(19,133,23,129),(20,145,24,149),(26,80,30,76),(28,74,32,78),(33,65,37,69),(34,105,38,109),(35,67,39,71),(36,107,40,111),(41,83,45,87),(42,89,46,93),(43,85,47,81),(44,91,48,95),(50,63,54,59),(52,57,56,61),(58,103,62,99),(60,97,64,101),(66,159,70,155),(68,153,72,157),(73,123,77,127),(75,125,79,121),(82,144,86,140),(84,138,88,142),(90,139,94,143),(92,141,96,137),(106,160,110,156),(108,154,112,158),(113,152,117,148),(114,134,118,130),(115,146,119,150),(116,136,120,132)], [(1,104,5,100),(2,97,6,101),(3,98,7,102),(4,99,8,103),(9,108,13,112),(10,109,14,105),(11,110,15,106),(12,111,16,107),(17,48,21,44),(18,41,22,45),(19,42,23,46),(20,43,24,47),(25,40,29,36),(26,33,30,37),(27,34,31,38),(28,35,32,39),(49,60,53,64),(50,61,54,57),(51,62,55,58),(52,63,56,59),(65,80,69,76),(66,73,70,77),(67,74,71,78),(68,75,72,79),(81,149,85,145),(82,150,86,146),(83,151,87,147),(84,152,88,148),(89,133,93,129),(90,134,94,130),(91,135,95,131),(92,136,96,132),(113,142,117,138),(114,143,118,139),(115,144,119,140),(116,137,120,141),(121,157,125,153),(122,158,126,154),(123,159,127,155),(124,160,128,156)], [(1,12,132,143,38),(2,144,13,39,133),(3,40,137,134,14),(4,135,33,15,138),(5,16,136,139,34),(6,140,9,35,129),(7,36,141,130,10),(8,131,37,11,142),(17,65,128,88,51),(18,81,66,52,121),(19,53,82,122,67),(20,123,54,68,83),(21,69,124,84,55),(22,85,70,56,125),(23,49,86,126,71),(24,127,50,72,87),(25,116,90,109,102),(26,110,117,103,91),(27,104,111,92,118),(28,93,97,119,112),(29,120,94,105,98),(30,106,113,99,95),(31,100,107,96,114),(32,89,101,115,108),(41,149,73,63,157),(42,64,150,158,74),(43,159,57,75,151),(44,76,160,152,58),(45,145,77,59,153),(46,60,146,154,78),(47,155,61,79,147),(48,80,156,148,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 20A | ··· | 20F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 20 | 20 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | ··· | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | C8○D4 | F5 | C2×F5 | C22⋊F5 | Q8.F5 |
kernel | (C2×Q8).5F5 | D10⋊C8 | C2×D5⋊C8 | C2×C4.F5 | C2×Q8⋊2D5 | C2×D20 | Q8×C10 | C4×D5 | C10 | C2×Q8 | C2×C4 | C4 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 6 | 2 | 4 | 8 | 1 | 3 | 4 | 2 |
Matrix representation of (C2×Q8).5F5 ►in GL8(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 40 | 40 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 38 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 35 | 0 | 16 | 16 |
0 | 0 | 0 | 0 | 16 | 16 | 0 | 35 |
0 | 0 | 0 | 0 | 25 | 19 | 25 | 0 |
0 | 0 | 0 | 0 | 6 | 22 | 22 | 6 |
G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0],[0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,35,38,0,0,0,0,0,0,39,6,0,0,0,0,0,0,0,0,35,16,25,6,0,0,0,0,0,16,19,22,0,0,0,0,16,0,25,22,0,0,0,0,16,35,0,6] >;
(C2×Q8).5F5 in GAP, Magma, Sage, TeX
(C_2\times Q_8)._5F_5
% in TeX
G:=Group("(C2xQ8).5F5");
// GroupNames label
G:=SmallGroup(320,1125);
// by ID
G=gap.SmallGroup(320,1125);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,184,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^5=1,c^2=e^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e^-1=a*b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations