extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×D4⋊C4)⋊1C2 = C5×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):1C2 | 320,966 |
(C5×D4⋊C4)⋊2C2 = C5×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):2C2 | 320,967 |
(C5×D4⋊C4)⋊3C2 = C5×C4.4D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):3C2 | 320,987 |
(C5×D4⋊C4)⋊4C2 = D4⋊D20 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 80 | | (C5xD4:C4):4C2 | 320,400 |
(C5×D4⋊C4)⋊5C2 = D10.12D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):5C2 | 320,401 |
(C5×D4⋊C4)⋊6C2 = D4.D20 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):6C2 | 320,410 |
(C5×D4⋊C4)⋊7C2 = C40⋊5C4⋊C2 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):7C2 | 320,411 |
(C5×D4⋊C4)⋊8C2 = D20⋊3D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):8C2 | 320,413 |
(C5×D4⋊C4)⋊9C2 = Dic10⋊2D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):9C2 | 320,389 |
(C5×D4⋊C4)⋊10C2 = D20.8D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 80 | | (C5xD4:C4):10C2 | 320,403 |
(C5×D4⋊C4)⋊11C2 = D10.16SD16 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):11C2 | 320,404 |
(C5×D4⋊C4)⋊12C2 = C40⋊6C4⋊C2 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):12C2 | 320,406 |
(C5×D4⋊C4)⋊13C2 = D4⋊3D20 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):13C2 | 320,408 |
(C5×D4⋊C4)⋊14C2 = D20.D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):14C2 | 320,414 |
(C5×D4⋊C4)⋊15C2 = Dic5⋊4D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):15C2 | 320,383 |
(C5×D4⋊C4)⋊16C2 = Dic5.5D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):16C2 | 320,387 |
(C5×D4⋊C4)⋊17C2 = C4⋊C4.D10 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):17C2 | 320,391 |
(C5×D4⋊C4)⋊18C2 = D5×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 80 | | (C5xD4:C4):18C2 | 320,396 |
(C5×D4⋊C4)⋊19C2 = (D4×D5)⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 80 | | (C5xD4:C4):19C2 | 320,397 |
(C5×D4⋊C4)⋊20C2 = D4⋊(C4×D5) | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):20C2 | 320,398 |
(C5×D4⋊C4)⋊21C2 = D4⋊2D5⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):21C2 | 320,399 |
(C5×D4⋊C4)⋊22C2 = D10⋊D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):22C2 | 320,402 |
(C5×D4⋊C4)⋊23C2 = D10⋊SD16 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):23C2 | 320,405 |
(C5×D4⋊C4)⋊24C2 = C5⋊2C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):24C2 | 320,407 |
(C5×D4⋊C4)⋊25C2 = C5⋊(C8⋊2D4) | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):25C2 | 320,409 |
(C5×D4⋊C4)⋊26C2 = D4⋊D5⋊6C4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):26C2 | 320,412 |
(C5×D4⋊C4)⋊27C2 = C5×C22⋊D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 80 | | (C5xD4:C4):27C2 | 320,948 |
(C5×D4⋊C4)⋊28C2 = C5×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):28C2 | 320,953 |
(C5×D4⋊C4)⋊29C2 = C5×C4⋊D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):29C2 | 320,960 |
(C5×D4⋊C4)⋊30C2 = C5×C22.D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):30C2 | 320,981 |
(C5×D4⋊C4)⋊31C2 = C5×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):31C2 | 320,983 |
(C5×D4⋊C4)⋊32C2 = C5×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):32C2 | 320,950 |
(C5×D4⋊C4)⋊33C2 = C5×C22⋊SD16 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 80 | | (C5xD4:C4):33C2 | 320,951 |
(C5×D4⋊C4)⋊34C2 = C5×C4⋊SD16 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):34C2 | 320,961 |
(C5×D4⋊C4)⋊35C2 = C5×D4.2D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):35C2 | 320,964 |
(C5×D4⋊C4)⋊36C2 = C5×C23.46D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):36C2 | 320,982 |
(C5×D4⋊C4)⋊37C2 = C5×C23.36D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):37C2 | 320,918 |
(C5×D4⋊C4)⋊38C2 = C5×C23.37D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 80 | | (C5xD4:C4):38C2 | 320,919 |
(C5×D4⋊C4)⋊39C2 = C5×D8⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):39C2 | 320,943 |
(C5×D4⋊C4)⋊40C2 = C5×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):40C2 | 320,969 |
(C5×D4⋊C4)⋊41C2 = C5×C8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):41C2 | 320,970 |
(C5×D4⋊C4)⋊42C2 = C5×C42.29C22 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4):42C2 | 320,991 |
(C5×D4⋊C4)⋊43C2 = C5×C23.24D4 | φ: trivial image | 160 | | (C5xD4:C4):43C2 | 320,917 |
(C5×D4⋊C4)⋊44C2 = D8×C20 | φ: trivial image | 160 | | (C5xD4:C4):44C2 | 320,938 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×D4⋊C4).1C2 = C5×C42.78C22 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).1C2 | 320,989 |
(C5×D4⋊C4).2C2 = Dic5.14D8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).2C2 | 320,386 |
(C5×D4⋊C4).3C2 = D4.2Dic10 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).3C2 | 320,393 |
(C5×D4⋊C4).4C2 = Dic10.D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).4C2 | 320,394 |
(C5×D4⋊C4).5C2 = D4⋊Dic10 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).5C2 | 320,388 |
(C5×D4⋊C4).6C2 = D4.Dic10 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).6C2 | 320,390 |
(C5×D4⋊C4).7C2 = D4.D5⋊5C4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).7C2 | 320,384 |
(C5×D4⋊C4).8C2 = Dic5⋊6SD16 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).8C2 | 320,385 |
(C5×D4⋊C4).9C2 = C20⋊Q8⋊C2 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).9C2 | 320,392 |
(C5×D4⋊C4).10C2 = (C8×Dic5)⋊C2 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).10C2 | 320,395 |
(C5×D4⋊C4).11C2 = C5×Q8.D4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).11C2 | 320,965 |
(C5×D4⋊C4).12C2 = C5×D4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).12C2 | 320,975 |
(C5×D4⋊C4).13C2 = C5×D4.Q8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).13C2 | 320,979 |
(C5×D4⋊C4).14C2 = C5×D4⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).14C2 | 320,977 |
(C5×D4⋊C4).15C2 = C5×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).15C2 | 320,941 |
(C5×D4⋊C4).16C2 = C5×C42.28C22 | φ: C2/C1 → C2 ⊆ Out C5×D4⋊C4 | 160 | | (C5xD4:C4).16C2 | 320,990 |
(C5×D4⋊C4).17C2 = SD16×C20 | φ: trivial image | 160 | | (C5xD4:C4).17C2 | 320,939 |