Copied to
clipboard

G = C405C4⋊C2order 320 = 26·5

9th semidirect product of C405C4 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C405C49C2, D4⋊C47D5, (C2×C8).11D10, D101C87C2, C4⋊C4.138D10, (C2×D4).30D10, C202D4.7C2, C20.Q87C2, C10.25(C4○D8), C4.54(C4○D20), D4⋊Dic510C2, (C2×C40).11C22, (C22×D5).24D4, C22.182(D4×D5), C20.152(C4○D4), C2.11(D83D5), C4.81(D42D5), C2.12(D40⋊C2), C10.56(C8⋊C22), (C2×C20).224C23, (C2×Dic5).200D4, (D4×C10).45C22, C53(C23.19D4), C4⋊Dic5.76C22, C2.15(D10.12D4), C10.23(C22.D4), C4⋊C47D54C2, (C5×D4⋊C4)⋊7C2, (C2×C4×D5).20C22, (C2×C10).237(C2×D4), (C5×C4⋊C4).25C22, (C2×C52C8).22C22, (C2×C4).331(C22×D5), SmallGroup(320,411)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C405C4⋊C2
C1C5C10C2×C10C2×C20C2×C4×D5C4⋊C47D5 — C405C4⋊C2
C5C10C2×C20 — C405C4⋊C2
C1C22C2×C4D4⋊C4

Generators and relations for C405C4⋊C2
 G = < a,b,c | a40=b4=c2=1, bab-1=a-1, cac=a11b2, cbc=b-1 >

Subgroups: 446 in 106 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, D4⋊C4, C4.Q8, C2.D8, C42⋊C2, C4⋊D4, C52C8, C40, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C23.19D4, C2×C52C8, C4×Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×C5⋊D4, D4×C10, C20.Q8, C405C4, D101C8, D4⋊Dic5, C5×D4⋊C4, C4⋊C47D5, C202D4, C405C4⋊C2
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22.D4, C4○D8, C8⋊C22, C22×D5, C23.19D4, C4○D20, D4×D5, D42D5, D10.12D4, D83D5, D40⋊C2, C405C4⋊C2

Smallest permutation representation of C405C4⋊C2
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 133 46 113)(2 132 47 112)(3 131 48 111)(4 130 49 110)(5 129 50 109)(6 128 51 108)(7 127 52 107)(8 126 53 106)(9 125 54 105)(10 124 55 104)(11 123 56 103)(12 122 57 102)(13 121 58 101)(14 160 59 100)(15 159 60 99)(16 158 61 98)(17 157 62 97)(18 156 63 96)(19 155 64 95)(20 154 65 94)(21 153 66 93)(22 152 67 92)(23 151 68 91)(24 150 69 90)(25 149 70 89)(26 148 71 88)(27 147 72 87)(28 146 73 86)(29 145 74 85)(30 144 75 84)(31 143 76 83)(32 142 77 82)(33 141 78 81)(34 140 79 120)(35 139 80 119)(36 138 41 118)(37 137 42 117)(38 136 43 116)(39 135 44 115)(40 134 45 114)
(1 133)(2 84)(3 155)(4 106)(5 137)(6 88)(7 159)(8 110)(9 141)(10 92)(11 123)(12 114)(13 145)(14 96)(15 127)(16 118)(17 149)(18 100)(19 131)(20 82)(21 153)(22 104)(23 135)(24 86)(25 157)(26 108)(27 139)(28 90)(29 121)(30 112)(31 143)(32 94)(33 125)(34 116)(35 147)(36 98)(37 129)(38 120)(39 151)(40 102)(41 158)(42 109)(43 140)(44 91)(45 122)(46 113)(47 144)(48 95)(49 126)(50 117)(51 148)(52 99)(53 130)(54 81)(55 152)(56 103)(57 134)(58 85)(59 156)(60 107)(61 138)(62 89)(63 160)(64 111)(65 142)(66 93)(67 124)(68 115)(69 146)(70 97)(71 128)(72 119)(73 150)(74 101)(75 132)(76 83)(77 154)(78 105)(79 136)(80 87)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,133,46,113)(2,132,47,112)(3,131,48,111)(4,130,49,110)(5,129,50,109)(6,128,51,108)(7,127,52,107)(8,126,53,106)(9,125,54,105)(10,124,55,104)(11,123,56,103)(12,122,57,102)(13,121,58,101)(14,160,59,100)(15,159,60,99)(16,158,61,98)(17,157,62,97)(18,156,63,96)(19,155,64,95)(20,154,65,94)(21,153,66,93)(22,152,67,92)(23,151,68,91)(24,150,69,90)(25,149,70,89)(26,148,71,88)(27,147,72,87)(28,146,73,86)(29,145,74,85)(30,144,75,84)(31,143,76,83)(32,142,77,82)(33,141,78,81)(34,140,79,120)(35,139,80,119)(36,138,41,118)(37,137,42,117)(38,136,43,116)(39,135,44,115)(40,134,45,114), (1,133)(2,84)(3,155)(4,106)(5,137)(6,88)(7,159)(8,110)(9,141)(10,92)(11,123)(12,114)(13,145)(14,96)(15,127)(16,118)(17,149)(18,100)(19,131)(20,82)(21,153)(22,104)(23,135)(24,86)(25,157)(26,108)(27,139)(28,90)(29,121)(30,112)(31,143)(32,94)(33,125)(34,116)(35,147)(36,98)(37,129)(38,120)(39,151)(40,102)(41,158)(42,109)(43,140)(44,91)(45,122)(46,113)(47,144)(48,95)(49,126)(50,117)(51,148)(52,99)(53,130)(54,81)(55,152)(56,103)(57,134)(58,85)(59,156)(60,107)(61,138)(62,89)(63,160)(64,111)(65,142)(66,93)(67,124)(68,115)(69,146)(70,97)(71,128)(72,119)(73,150)(74,101)(75,132)(76,83)(77,154)(78,105)(79,136)(80,87)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,133,46,113)(2,132,47,112)(3,131,48,111)(4,130,49,110)(5,129,50,109)(6,128,51,108)(7,127,52,107)(8,126,53,106)(9,125,54,105)(10,124,55,104)(11,123,56,103)(12,122,57,102)(13,121,58,101)(14,160,59,100)(15,159,60,99)(16,158,61,98)(17,157,62,97)(18,156,63,96)(19,155,64,95)(20,154,65,94)(21,153,66,93)(22,152,67,92)(23,151,68,91)(24,150,69,90)(25,149,70,89)(26,148,71,88)(27,147,72,87)(28,146,73,86)(29,145,74,85)(30,144,75,84)(31,143,76,83)(32,142,77,82)(33,141,78,81)(34,140,79,120)(35,139,80,119)(36,138,41,118)(37,137,42,117)(38,136,43,116)(39,135,44,115)(40,134,45,114), (1,133)(2,84)(3,155)(4,106)(5,137)(6,88)(7,159)(8,110)(9,141)(10,92)(11,123)(12,114)(13,145)(14,96)(15,127)(16,118)(17,149)(18,100)(19,131)(20,82)(21,153)(22,104)(23,135)(24,86)(25,157)(26,108)(27,139)(28,90)(29,121)(30,112)(31,143)(32,94)(33,125)(34,116)(35,147)(36,98)(37,129)(38,120)(39,151)(40,102)(41,158)(42,109)(43,140)(44,91)(45,122)(46,113)(47,144)(48,95)(49,126)(50,117)(51,148)(52,99)(53,130)(54,81)(55,152)(56,103)(57,134)(58,85)(59,156)(60,107)(61,138)(62,89)(63,160)(64,111)(65,142)(66,93)(67,124)(68,115)(69,146)(70,97)(71,128)(72,119)(73,150)(74,101)(75,132)(76,83)(77,154)(78,105)(79,136)(80,87) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,133,46,113),(2,132,47,112),(3,131,48,111),(4,130,49,110),(5,129,50,109),(6,128,51,108),(7,127,52,107),(8,126,53,106),(9,125,54,105),(10,124,55,104),(11,123,56,103),(12,122,57,102),(13,121,58,101),(14,160,59,100),(15,159,60,99),(16,158,61,98),(17,157,62,97),(18,156,63,96),(19,155,64,95),(20,154,65,94),(21,153,66,93),(22,152,67,92),(23,151,68,91),(24,150,69,90),(25,149,70,89),(26,148,71,88),(27,147,72,87),(28,146,73,86),(29,145,74,85),(30,144,75,84),(31,143,76,83),(32,142,77,82),(33,141,78,81),(34,140,79,120),(35,139,80,119),(36,138,41,118),(37,137,42,117),(38,136,43,116),(39,135,44,115),(40,134,45,114)], [(1,133),(2,84),(3,155),(4,106),(5,137),(6,88),(7,159),(8,110),(9,141),(10,92),(11,123),(12,114),(13,145),(14,96),(15,127),(16,118),(17,149),(18,100),(19,131),(20,82),(21,153),(22,104),(23,135),(24,86),(25,157),(26,108),(27,139),(28,90),(29,121),(30,112),(31,143),(32,94),(33,125),(34,116),(35,147),(36,98),(37,129),(38,120),(39,151),(40,102),(41,158),(42,109),(43,140),(44,91),(45,122),(46,113),(47,144),(48,95),(49,126),(50,117),(51,148),(52,99),(53,130),(54,81),(55,152),(56,103),(57,134),(58,85),(59,156),(60,107),(61,138),(62,89),(63,160),(64,111),(65,142),(66,93),(67,124),(68,115),(69,146),(70,97),(71,128),(72,119),(73,150),(74,101),(75,132),(76,83),(77,154),(78,105),(79,136),(80,87)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222244444444455888810···1010101010202020202020202040···40
size111182022441010202040224420202···28888444488884···4

47 irreducible representations

dim1111111122222222244444
type+++++++++++++++-+-+
imageC1C2C2C2C2C2C2C2D4D4D5C4○D4D10D10D10C4○D8C4○D20C8⋊C22D42D5D4×D5D83D5D40⋊C2
kernelC405C4⋊C2C20.Q8C405C4D101C8D4⋊Dic5C5×D4⋊C4C4⋊C47D5C202D4C2×Dic5C22×D5D4⋊C4C20C4⋊C4C2×C8C2×D4C10C4C10C4C22C2C2
# reps1111111111242224812244

Matrix representation of C405C4⋊C2 in GL4(𝔽41) generated by

3000
81400
003916
002525
,
29400
151200
002020
002321
,
123700
52900
00186
003523
G:=sub<GL(4,GF(41))| [3,8,0,0,0,14,0,0,0,0,39,25,0,0,16,25],[29,15,0,0,4,12,0,0,0,0,20,23,0,0,20,21],[12,5,0,0,37,29,0,0,0,0,18,35,0,0,6,23] >;

C405C4⋊C2 in GAP, Magma, Sage, TeX

C_{40}\rtimes_5C_4\rtimes C_2
% in TeX

G:=Group("C40:5C4:C2");
// GroupNames label

G:=SmallGroup(320,411);
// by ID

G=gap.SmallGroup(320,411);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,64,926,219,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^11*b^2,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽