Copied to
clipboard

G = D43D20order 320 = 26·5

2nd semidirect product of D4 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D43D20, Dic103D4, (C5×D4)⋊2D4, C20.2(C2×D4), C4.86(D4×D5), C4.3(C2×D20), C4⋊D203C2, C52(D4⋊D4), C4⋊C4.12D10, D4⋊C413D5, C10.Q166C2, (C2×C8).117D10, D101C812C2, C10.21C22≀C2, (C2×D4).136D10, C10.42(C4○D8), (C22×D5).21D4, C22.179(D4×D5), C2.17(D8⋊D5), C10.35(C8⋊C22), (C2×C40).128C22, (C2×C20).221C23, (C2×Dic5).198D4, (D4×C10).42C22, (C2×D20).55C22, C2.24(C22⋊D20), C2.12(SD163D5), (C2×Dic10).63C22, (C2×D4⋊D5)⋊4C2, (C2×D42D5)⋊1C2, (C2×C40⋊C2)⋊15C2, (C5×D4⋊C4)⋊13C2, (C2×C4×D5).17C22, (C2×C10).234(C2×D4), (C5×C4⋊C4).22C22, (C2×C52C8).19C22, (C2×C4).328(C22×D5), SmallGroup(320,408)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D43D20
C1C5C10C2×C10C2×C20C2×C4×D5C2×D42D5 — D43D20
C5C10C2×C20 — D43D20
C1C22C2×C4D4⋊C4

Generators and relations for D43D20
 G = < a,b,c,d | a4=b2=c20=d2=1, bab=cac-1=dad=a-1, cbc-1=a-1b, dbd=ab, dcd=c-1 >

Subgroups: 782 in 162 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C52C8, C40, Dic10, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C22×D5, C22×D5, C22×C10, D4⋊D4, C40⋊C2, C2×C52C8, D10⋊C4, D4⋊D5, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, C2×D20, D42D5, C22×Dic5, C2×C5⋊D4, D4×C10, C10.Q16, D101C8, C5×D4⋊C4, C4⋊D20, C2×C40⋊C2, C2×D4⋊D5, C2×D42D5, D43D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C4○D8, C8⋊C22, D20, C22×D5, D4⋊D4, C2×D20, D4×D5, C22⋊D20, D8⋊D5, SD163D5, D43D20

Smallest permutation representation of D43D20
On 160 points
Generators in S160
(1 55 28 88)(2 89 29 56)(3 57 30 90)(4 91 31 58)(5 59 32 92)(6 93 33 60)(7 41 34 94)(8 95 35 42)(9 43 36 96)(10 97 37 44)(11 45 38 98)(12 99 39 46)(13 47 40 100)(14 81 21 48)(15 49 22 82)(16 83 23 50)(17 51 24 84)(18 85 25 52)(19 53 26 86)(20 87 27 54)(61 127 158 114)(62 115 159 128)(63 129 160 116)(64 117 141 130)(65 131 142 118)(66 119 143 132)(67 133 144 120)(68 101 145 134)(69 135 146 102)(70 103 147 136)(71 137 148 104)(72 105 149 138)(73 139 150 106)(74 107 151 140)(75 121 152 108)(76 109 153 122)(77 123 154 110)(78 111 155 124)(79 125 156 112)(80 113 157 126)
(1 148)(2 105)(3 150)(4 107)(5 152)(6 109)(7 154)(8 111)(9 156)(10 113)(11 158)(12 115)(13 160)(14 117)(15 142)(16 119)(17 144)(18 101)(19 146)(20 103)(21 130)(22 65)(23 132)(24 67)(25 134)(26 69)(27 136)(28 71)(29 138)(30 73)(31 140)(32 75)(33 122)(34 77)(35 124)(36 79)(37 126)(38 61)(39 128)(40 63)(41 123)(42 155)(43 125)(44 157)(45 127)(46 159)(47 129)(48 141)(49 131)(50 143)(51 133)(52 145)(53 135)(54 147)(55 137)(56 149)(57 139)(58 151)(59 121)(60 153)(62 99)(64 81)(66 83)(68 85)(70 87)(72 89)(74 91)(76 93)(78 95)(80 97)(82 118)(84 120)(86 102)(88 104)(90 106)(92 108)(94 110)(96 112)(98 114)(100 116)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 29)(22 28)(23 27)(24 26)(30 40)(31 39)(32 38)(33 37)(34 36)(41 96)(42 95)(43 94)(44 93)(45 92)(46 91)(47 90)(48 89)(49 88)(50 87)(51 86)(52 85)(53 84)(54 83)(55 82)(56 81)(57 100)(58 99)(59 98)(60 97)(61 108)(62 107)(63 106)(64 105)(65 104)(66 103)(67 102)(68 101)(69 120)(70 119)(71 118)(72 117)(73 116)(74 115)(75 114)(76 113)(77 112)(78 111)(79 110)(80 109)(121 158)(122 157)(123 156)(124 155)(125 154)(126 153)(127 152)(128 151)(129 150)(130 149)(131 148)(132 147)(133 146)(134 145)(135 144)(136 143)(137 142)(138 141)(139 160)(140 159)

G:=sub<Sym(160)| (1,55,28,88)(2,89,29,56)(3,57,30,90)(4,91,31,58)(5,59,32,92)(6,93,33,60)(7,41,34,94)(8,95,35,42)(9,43,36,96)(10,97,37,44)(11,45,38,98)(12,99,39,46)(13,47,40,100)(14,81,21,48)(15,49,22,82)(16,83,23,50)(17,51,24,84)(18,85,25,52)(19,53,26,86)(20,87,27,54)(61,127,158,114)(62,115,159,128)(63,129,160,116)(64,117,141,130)(65,131,142,118)(66,119,143,132)(67,133,144,120)(68,101,145,134)(69,135,146,102)(70,103,147,136)(71,137,148,104)(72,105,149,138)(73,139,150,106)(74,107,151,140)(75,121,152,108)(76,109,153,122)(77,123,154,110)(78,111,155,124)(79,125,156,112)(80,113,157,126), (1,148)(2,105)(3,150)(4,107)(5,152)(6,109)(7,154)(8,111)(9,156)(10,113)(11,158)(12,115)(13,160)(14,117)(15,142)(16,119)(17,144)(18,101)(19,146)(20,103)(21,130)(22,65)(23,132)(24,67)(25,134)(26,69)(27,136)(28,71)(29,138)(30,73)(31,140)(32,75)(33,122)(34,77)(35,124)(36,79)(37,126)(38,61)(39,128)(40,63)(41,123)(42,155)(43,125)(44,157)(45,127)(46,159)(47,129)(48,141)(49,131)(50,143)(51,133)(52,145)(53,135)(54,147)(55,137)(56,149)(57,139)(58,151)(59,121)(60,153)(62,99)(64,81)(66,83)(68,85)(70,87)(72,89)(74,91)(76,93)(78,95)(80,97)(82,118)(84,120)(86,102)(88,104)(90,106)(92,108)(94,110)(96,112)(98,114)(100,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,29)(22,28)(23,27)(24,26)(30,40)(31,39)(32,38)(33,37)(34,36)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,100)(58,99)(59,98)(60,97)(61,108)(62,107)(63,106)(64,105)(65,104)(66,103)(67,102)(68,101)(69,120)(70,119)(71,118)(72,117)(73,116)(74,115)(75,114)(76,113)(77,112)(78,111)(79,110)(80,109)(121,158)(122,157)(123,156)(124,155)(125,154)(126,153)(127,152)(128,151)(129,150)(130,149)(131,148)(132,147)(133,146)(134,145)(135,144)(136,143)(137,142)(138,141)(139,160)(140,159)>;

G:=Group( (1,55,28,88)(2,89,29,56)(3,57,30,90)(4,91,31,58)(5,59,32,92)(6,93,33,60)(7,41,34,94)(8,95,35,42)(9,43,36,96)(10,97,37,44)(11,45,38,98)(12,99,39,46)(13,47,40,100)(14,81,21,48)(15,49,22,82)(16,83,23,50)(17,51,24,84)(18,85,25,52)(19,53,26,86)(20,87,27,54)(61,127,158,114)(62,115,159,128)(63,129,160,116)(64,117,141,130)(65,131,142,118)(66,119,143,132)(67,133,144,120)(68,101,145,134)(69,135,146,102)(70,103,147,136)(71,137,148,104)(72,105,149,138)(73,139,150,106)(74,107,151,140)(75,121,152,108)(76,109,153,122)(77,123,154,110)(78,111,155,124)(79,125,156,112)(80,113,157,126), (1,148)(2,105)(3,150)(4,107)(5,152)(6,109)(7,154)(8,111)(9,156)(10,113)(11,158)(12,115)(13,160)(14,117)(15,142)(16,119)(17,144)(18,101)(19,146)(20,103)(21,130)(22,65)(23,132)(24,67)(25,134)(26,69)(27,136)(28,71)(29,138)(30,73)(31,140)(32,75)(33,122)(34,77)(35,124)(36,79)(37,126)(38,61)(39,128)(40,63)(41,123)(42,155)(43,125)(44,157)(45,127)(46,159)(47,129)(48,141)(49,131)(50,143)(51,133)(52,145)(53,135)(54,147)(55,137)(56,149)(57,139)(58,151)(59,121)(60,153)(62,99)(64,81)(66,83)(68,85)(70,87)(72,89)(74,91)(76,93)(78,95)(80,97)(82,118)(84,120)(86,102)(88,104)(90,106)(92,108)(94,110)(96,112)(98,114)(100,116), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,29)(22,28)(23,27)(24,26)(30,40)(31,39)(32,38)(33,37)(34,36)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,100)(58,99)(59,98)(60,97)(61,108)(62,107)(63,106)(64,105)(65,104)(66,103)(67,102)(68,101)(69,120)(70,119)(71,118)(72,117)(73,116)(74,115)(75,114)(76,113)(77,112)(78,111)(79,110)(80,109)(121,158)(122,157)(123,156)(124,155)(125,154)(126,153)(127,152)(128,151)(129,150)(130,149)(131,148)(132,147)(133,146)(134,145)(135,144)(136,143)(137,142)(138,141)(139,160)(140,159) );

G=PermutationGroup([[(1,55,28,88),(2,89,29,56),(3,57,30,90),(4,91,31,58),(5,59,32,92),(6,93,33,60),(7,41,34,94),(8,95,35,42),(9,43,36,96),(10,97,37,44),(11,45,38,98),(12,99,39,46),(13,47,40,100),(14,81,21,48),(15,49,22,82),(16,83,23,50),(17,51,24,84),(18,85,25,52),(19,53,26,86),(20,87,27,54),(61,127,158,114),(62,115,159,128),(63,129,160,116),(64,117,141,130),(65,131,142,118),(66,119,143,132),(67,133,144,120),(68,101,145,134),(69,135,146,102),(70,103,147,136),(71,137,148,104),(72,105,149,138),(73,139,150,106),(74,107,151,140),(75,121,152,108),(76,109,153,122),(77,123,154,110),(78,111,155,124),(79,125,156,112),(80,113,157,126)], [(1,148),(2,105),(3,150),(4,107),(5,152),(6,109),(7,154),(8,111),(9,156),(10,113),(11,158),(12,115),(13,160),(14,117),(15,142),(16,119),(17,144),(18,101),(19,146),(20,103),(21,130),(22,65),(23,132),(24,67),(25,134),(26,69),(27,136),(28,71),(29,138),(30,73),(31,140),(32,75),(33,122),(34,77),(35,124),(36,79),(37,126),(38,61),(39,128),(40,63),(41,123),(42,155),(43,125),(44,157),(45,127),(46,159),(47,129),(48,141),(49,131),(50,143),(51,133),(52,145),(53,135),(54,147),(55,137),(56,149),(57,139),(58,151),(59,121),(60,153),(62,99),(64,81),(66,83),(68,85),(70,87),(72,89),(74,91),(76,93),(78,95),(80,97),(82,118),(84,120),(86,102),(88,104),(90,106),(92,108),(94,110),(96,112),(98,114),(100,116)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,29),(22,28),(23,27),(24,26),(30,40),(31,39),(32,38),(33,37),(34,36),(41,96),(42,95),(43,94),(44,93),(45,92),(46,91),(47,90),(48,89),(49,88),(50,87),(51,86),(52,85),(53,84),(54,83),(55,82),(56,81),(57,100),(58,99),(59,98),(60,97),(61,108),(62,107),(63,106),(64,105),(65,104),(66,103),(67,102),(68,101),(69,120),(70,119),(71,118),(72,117),(73,116),(74,115),(75,114),(76,113),(77,112),(78,111),(79,110),(80,109),(121,158),(122,157),(123,156),(124,155),(125,154),(126,153),(127,152),(128,151),(129,150),(130,149),(131,148),(132,147),(133,146),(134,145),(135,144),(136,143),(137,142),(138,141),(139,160),(140,159)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222222444444455888810···1010101010202020202020202040···40
size111144204022810102020224420202···28888444488884···4

47 irreducible representations

dim11111111222222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D10D10D10C4○D8D20C8⋊C22D4×D5D4×D5D8⋊D5SD163D5
kernelD43D20C10.Q16D101C8C5×D4⋊C4C4⋊D20C2×C40⋊C2C2×D4⋊D5C2×D42D5Dic10C2×Dic5C5×D4C22×D5D4⋊C4C4⋊C4C2×C8C2×D4C10D4C10C4C22C2C2
# reps11111111212122224812244

Matrix representation of D43D20 in GL4(𝔽41) generated by

1000
0100
00121
003740
,
40000
04000
00035
00340
,
23000
271600
00925
00032
,
40000
5100
00400
0041
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,1,37,0,0,21,40],[40,0,0,0,0,40,0,0,0,0,0,34,0,0,35,0],[2,27,0,0,30,16,0,0,0,0,9,0,0,0,25,32],[40,5,0,0,0,1,0,0,0,0,40,4,0,0,0,1] >;

D43D20 in GAP, Magma, Sage, TeX

D_4\rtimes_3D_{20}
% in TeX

G:=Group("D4:3D20");
// GroupNames label

G:=SmallGroup(320,408);
// by ID

G=gap.SmallGroup(320,408);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,254,219,58,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽