metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊6(C4×D5), (C4×D5).4D4, D4⋊2D5⋊1C4, C4.156(D4×D5), D4⋊C4⋊17D5, C4⋊C4.133D10, C20.105(C2×D4), D4⋊Dic5⋊5C2, C10.Q16⋊4C2, (C2×C8).168D10, C22.70(D4×D5), Dic10⋊12(C2×C4), (C2×D4).132D10, C2.3(D8⋊D5), C20.41(C22×C4), C20.44D4⋊18C2, C10.30(C8⋊C22), (C2×C20).211C23, (C2×C40).182C22, (C2×Dic5).196D4, C2.2(SD16⋊D5), (C22×D5).106D4, (D4×C10).32C22, C5⋊2(C23.36D4), C4⋊Dic5.67C22, D10.23(C22⋊C4), C10.28(C8.C22), Dic5.37(C22⋊C4), (C2×Dic10).59C22, C4.6(C2×C4×D5), (D5×C4⋊C4)⋊2C2, (C5×D4)⋊13(C2×C4), (C4×D5).2(C2×C4), (C2×C8⋊D5)⋊16C2, C2.19(D5×C22⋊C4), (C5×D4⋊C4)⋊20C2, (C2×C4×D5).10C22, (C2×D4⋊2D5).3C2, (C2×C10).224(C2×D4), (C5×C4⋊C4).14C22, C10.59(C2×C22⋊C4), (C2×C5⋊2C8).14C22, (C2×C4).318(C22×D5), SmallGroup(320,398)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — D4⋊C4 |
Generators and relations for D4⋊(C4×D5)
G = < a,b,c,d,e | a4=b2=c4=d5=e2=1, bab=cac-1=a-1, ad=da, ae=ea, cbc-1=a-1b, bd=db, ebe=a2b, cd=dc, ce=ec, ede=d-1 >
Subgroups: 638 in 162 conjugacy classes, 55 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, D4⋊C4, D4⋊C4, Q8⋊C4, C2×C4⋊C4, C2×M4(2), C2×C4○D4, C5⋊2C8, C40, Dic10, Dic10, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, C23.36D4, C8⋊D5, C2×C5⋊2C8, C10.D4, C4⋊Dic5, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×C4×D5, D4⋊2D5, D4⋊2D5, C22×Dic5, C2×C5⋊D4, D4×C10, C10.Q16, C20.44D4, D4⋊Dic5, C5×D4⋊C4, D5×C4⋊C4, C2×C8⋊D5, C2×D4⋊2D5, D4⋊(C4×D5)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C8⋊C22, C8.C22, C4×D5, C22×D5, C23.36D4, C2×C4×D5, D4×D5, D5×C22⋊C4, D8⋊D5, SD16⋊D5, D4⋊(C4×D5)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 51 46 56)(42 52 47 57)(43 53 48 58)(44 54 49 59)(45 55 50 60)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)(121 136 126 131)(122 137 127 132)(123 138 128 133)(124 139 129 134)(125 140 130 135)(141 156 146 151)(142 157 147 152)(143 158 148 153)(144 159 149 154)(145 160 150 155)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 91)(7 92)(8 93)(9 94)(10 95)(11 81)(12 82)(13 83)(14 84)(15 85)(16 86)(17 87)(18 88)(19 89)(20 90)(21 116)(22 117)(23 118)(24 119)(25 120)(26 111)(27 112)(28 113)(29 114)(30 115)(31 101)(32 102)(33 103)(34 104)(35 105)(36 106)(37 107)(38 108)(39 109)(40 110)(41 131)(42 132)(43 133)(44 134)(45 135)(46 136)(47 137)(48 138)(49 139)(50 140)(51 126)(52 127)(53 128)(54 129)(55 130)(56 121)(57 122)(58 123)(59 124)(60 125)(61 151)(62 152)(63 153)(64 154)(65 155)(66 156)(67 157)(68 158)(69 159)(70 160)(71 146)(72 147)(73 148)(74 149)(75 150)(76 141)(77 142)(78 143)(79 144)(80 145)
(1 61 21 41)(2 62 22 42)(3 63 23 43)(4 64 24 44)(5 65 25 45)(6 66 26 46)(7 67 27 47)(8 68 28 48)(9 69 29 49)(10 70 30 50)(11 71 31 51)(12 72 32 52)(13 73 33 53)(14 74 34 54)(15 75 35 55)(16 76 36 56)(17 77 37 57)(18 78 38 58)(19 79 39 59)(20 80 40 60)(81 151 101 131)(82 152 102 132)(83 153 103 133)(84 154 104 134)(85 155 105 135)(86 156 106 136)(87 157 107 137)(88 158 108 138)(89 159 109 139)(90 160 110 140)(91 146 111 126)(92 147 112 127)(93 148 113 128)(94 149 114 129)(95 150 115 130)(96 141 116 121)(97 142 117 122)(98 143 118 123)(99 144 119 124)(100 145 120 125)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 30)(7 29)(8 28)(9 27)(10 26)(11 35)(12 34)(13 33)(14 32)(15 31)(16 40)(17 39)(18 38)(19 37)(20 36)(41 65)(42 64)(43 63)(44 62)(45 61)(46 70)(47 69)(48 68)(49 67)(50 66)(51 75)(52 74)(53 73)(54 72)(55 71)(56 80)(57 79)(58 78)(59 77)(60 76)(81 110)(82 109)(83 108)(84 107)(85 106)(86 105)(87 104)(88 103)(89 102)(90 101)(91 120)(92 119)(93 118)(94 117)(95 116)(96 115)(97 114)(98 113)(99 112)(100 111)(121 150)(122 149)(123 148)(124 147)(125 146)(126 145)(127 144)(128 143)(129 142)(130 141)(131 160)(132 159)(133 158)(134 157)(135 156)(136 155)(137 154)(138 153)(139 152)(140 151)
G:=sub<Sym(160)| (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,136,126,131)(122,137,127,132)(123,138,128,133)(124,139,129,134)(125,140,130,135)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,96)(2,97)(3,98)(4,99)(5,100)(6,91)(7,92)(8,93)(9,94)(10,95)(11,81)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,116)(22,117)(23,118)(24,119)(25,120)(26,111)(27,112)(28,113)(29,114)(30,115)(31,101)(32,102)(33,103)(34,104)(35,105)(36,106)(37,107)(38,108)(39,109)(40,110)(41,131)(42,132)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,139)(50,140)(51,126)(52,127)(53,128)(54,129)(55,130)(56,121)(57,122)(58,123)(59,124)(60,125)(61,151)(62,152)(63,153)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,146)(72,147)(73,148)(74,149)(75,150)(76,141)(77,142)(78,143)(79,144)(80,145), (1,61,21,41)(2,62,22,42)(3,63,23,43)(4,64,24,44)(5,65,25,45)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,151,101,131)(82,152,102,132)(83,153,103,133)(84,154,104,134)(85,155,105,135)(86,156,106,136)(87,157,107,137)(88,158,108,138)(89,159,109,139)(90,160,110,140)(91,146,111,126)(92,147,112,127)(93,148,113,128)(94,149,114,129)(95,150,115,130)(96,141,116,121)(97,142,117,122)(98,143,118,123)(99,144,119,124)(100,145,120,125), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,35)(12,34)(13,33)(14,32)(15,31)(16,40)(17,39)(18,38)(19,37)(20,36)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,75)(52,74)(53,73)(54,72)(55,71)(56,80)(57,79)(58,78)(59,77)(60,76)(81,110)(82,109)(83,108)(84,107)(85,106)(86,105)(87,104)(88,103)(89,102)(90,101)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(121,150)(122,149)(123,148)(124,147)(125,146)(126,145)(127,144)(128,143)(129,142)(130,141)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151)>;
G:=Group( (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,136,126,131)(122,137,127,132)(123,138,128,133)(124,139,129,134)(125,140,130,135)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,96)(2,97)(3,98)(4,99)(5,100)(6,91)(7,92)(8,93)(9,94)(10,95)(11,81)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,89)(20,90)(21,116)(22,117)(23,118)(24,119)(25,120)(26,111)(27,112)(28,113)(29,114)(30,115)(31,101)(32,102)(33,103)(34,104)(35,105)(36,106)(37,107)(38,108)(39,109)(40,110)(41,131)(42,132)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,139)(50,140)(51,126)(52,127)(53,128)(54,129)(55,130)(56,121)(57,122)(58,123)(59,124)(60,125)(61,151)(62,152)(63,153)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,146)(72,147)(73,148)(74,149)(75,150)(76,141)(77,142)(78,143)(79,144)(80,145), (1,61,21,41)(2,62,22,42)(3,63,23,43)(4,64,24,44)(5,65,25,45)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,151,101,131)(82,152,102,132)(83,153,103,133)(84,154,104,134)(85,155,105,135)(86,156,106,136)(87,157,107,137)(88,158,108,138)(89,159,109,139)(90,160,110,140)(91,146,111,126)(92,147,112,127)(93,148,113,128)(94,149,114,129)(95,150,115,130)(96,141,116,121)(97,142,117,122)(98,143,118,123)(99,144,119,124)(100,145,120,125), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,35)(12,34)(13,33)(14,32)(15,31)(16,40)(17,39)(18,38)(19,37)(20,36)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,75)(52,74)(53,73)(54,72)(55,71)(56,80)(57,79)(58,78)(59,77)(60,76)(81,110)(82,109)(83,108)(84,107)(85,106)(86,105)(87,104)(88,103)(89,102)(90,101)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115)(97,114)(98,113)(99,112)(100,111)(121,150)(122,149)(123,148)(124,147)(125,146)(126,145)(127,144)(128,143)(129,142)(130,141)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151) );
G=PermutationGroup([[(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,51,46,56),(42,52,47,57),(43,53,48,58),(44,54,49,59),(45,55,50,60),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120),(121,136,126,131),(122,137,127,132),(123,138,128,133),(124,139,129,134),(125,140,130,135),(141,156,146,151),(142,157,147,152),(143,158,148,153),(144,159,149,154),(145,160,150,155)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,91),(7,92),(8,93),(9,94),(10,95),(11,81),(12,82),(13,83),(14,84),(15,85),(16,86),(17,87),(18,88),(19,89),(20,90),(21,116),(22,117),(23,118),(24,119),(25,120),(26,111),(27,112),(28,113),(29,114),(30,115),(31,101),(32,102),(33,103),(34,104),(35,105),(36,106),(37,107),(38,108),(39,109),(40,110),(41,131),(42,132),(43,133),(44,134),(45,135),(46,136),(47,137),(48,138),(49,139),(50,140),(51,126),(52,127),(53,128),(54,129),(55,130),(56,121),(57,122),(58,123),(59,124),(60,125),(61,151),(62,152),(63,153),(64,154),(65,155),(66,156),(67,157),(68,158),(69,159),(70,160),(71,146),(72,147),(73,148),(74,149),(75,150),(76,141),(77,142),(78,143),(79,144),(80,145)], [(1,61,21,41),(2,62,22,42),(3,63,23,43),(4,64,24,44),(5,65,25,45),(6,66,26,46),(7,67,27,47),(8,68,28,48),(9,69,29,49),(10,70,30,50),(11,71,31,51),(12,72,32,52),(13,73,33,53),(14,74,34,54),(15,75,35,55),(16,76,36,56),(17,77,37,57),(18,78,38,58),(19,79,39,59),(20,80,40,60),(81,151,101,131),(82,152,102,132),(83,153,103,133),(84,154,104,134),(85,155,105,135),(86,156,106,136),(87,157,107,137),(88,158,108,138),(89,159,109,139),(90,160,110,140),(91,146,111,126),(92,147,112,127),(93,148,113,128),(94,149,114,129),(95,150,115,130),(96,141,116,121),(97,142,117,122),(98,143,118,123),(99,144,119,124),(100,145,120,125)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,30),(7,29),(8,28),(9,27),(10,26),(11,35),(12,34),(13,33),(14,32),(15,31),(16,40),(17,39),(18,38),(19,37),(20,36),(41,65),(42,64),(43,63),(44,62),(45,61),(46,70),(47,69),(48,68),(49,67),(50,66),(51,75),(52,74),(53,73),(54,72),(55,71),(56,80),(57,79),(58,78),(59,77),(60,76),(81,110),(82,109),(83,108),(84,107),(85,106),(86,105),(87,104),(88,103),(89,102),(90,101),(91,120),(92,119),(93,118),(94,117),(95,116),(96,115),(97,114),(98,113),(99,112),(100,111),(121,150),(122,149),(123,148),(124,147),(125,146),(126,145),(127,144),(128,143),(129,142),(130,141),(131,160),(132,159),(133,158),(134,157),(135,156),(136,155),(137,154),(138,153),(139,152),(140,151)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 10 | 10 | 2 | 2 | 4 | 4 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | C4×D5 | C8⋊C22 | C8.C22 | D4×D5 | D4×D5 | D8⋊D5 | SD16⋊D5 |
kernel | D4⋊(C4×D5) | C10.Q16 | C20.44D4 | D4⋊Dic5 | C5×D4⋊C4 | D5×C4⋊C4 | C2×C8⋊D5 | C2×D4⋊2D5 | D4⋊2D5 | C4×D5 | C2×Dic5 | C22×D5 | D4⋊C4 | C4⋊C4 | C2×C8 | C2×D4 | D4 | C10 | C10 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of D4⋊(C4×D5) ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 28 | 24 |
0 | 0 | 0 | 1 | 13 | 28 |
0 | 0 | 11 | 14 | 40 | 0 |
0 | 0 | 11 | 11 | 0 | 40 |
22 | 5 | 0 | 0 | 0 | 0 |
10 | 19 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 35 | 33 | 15 |
0 | 0 | 6 | 18 | 33 | 33 |
0 | 0 | 0 | 0 | 23 | 6 |
0 | 0 | 0 | 0 | 35 | 18 |
33 | 8 | 0 | 0 | 0 | 0 |
38 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 0 | 8 | 1 |
0 | 0 | 0 | 24 | 33 | 8 |
0 | 0 | 9 | 4 | 17 | 0 |
0 | 0 | 9 | 9 | 0 | 17 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 40 | 0 | 0 |
0 | 0 | 35 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 40 |
0 | 0 | 0 | 0 | 35 | 35 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,11,11,0,0,0,1,14,11,0,0,28,13,40,0,0,0,24,28,0,40],[22,10,0,0,0,0,5,19,0,0,0,0,0,0,23,6,0,0,0,0,35,18,0,0,0,0,33,33,23,35,0,0,15,33,6,18],[33,38,0,0,0,0,8,8,0,0,0,0,0,0,24,0,9,9,0,0,0,24,4,9,0,0,8,33,17,0,0,0,1,8,0,17],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,6,1,0,0,0,0,40,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,35,0,0,0,0,40,6,0,0,0,0,0,0,6,35,0,0,0,0,40,35] >;
D4⋊(C4×D5) in GAP, Magma, Sage, TeX
D_4\rtimes (C_4\times D_5)
% in TeX
G:=Group("D4:(C4xD5)");
// GroupNames label
G:=SmallGroup(320,398);
// by ID
G=gap.SmallGroup(320,398);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,219,58,851,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=c^4=d^5=e^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=a^-1*b,b*d=d*b,e*b*e=a^2*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations