Copied to
clipboard

G = D4.D20order 320 = 26·5

2nd non-split extension by D4 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.7D20, Dic10.9D4, (C5×D4).2D4, C20.3(C2×D4), C4.87(D4×D5), C4.4(C2×D20), D4⋊C46D5, C4⋊C4.14D10, (C2×C8).10D10, D101C86C2, D102Q84C2, (C2×Dic20)⋊5C2, C10.Q167C2, C52(D4.7D4), C10.22C22≀C2, (C2×D4).137D10, C10.24(C4○D8), (C2×C40).10C22, (C22×D5).23D4, C22.181(D4×D5), C2.10(D83D5), (C2×C20).223C23, (C2×Dic5).199D4, (D4×C10).44C22, C2.25(C22⋊D20), C2.13(SD16⋊D5), C10.31(C8.C22), (C2×Dic10).64C22, (C2×D4.D5)⋊6C2, (C5×D4⋊C4)⋊6C2, (C2×C4×D5).19C22, (C2×D42D5).5C2, (C2×C10).236(C2×D4), (C5×C4⋊C4).24C22, (C2×C52C8).21C22, (C2×C4).330(C22×D5), SmallGroup(320,410)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D4.D20
C1C5C10C2×C10C2×C20C2×C4×D5C2×D42D5 — D4.D20
C5C10C2×C20 — D4.D20
C1C22C2×C4D4⋊C4

Generators and relations for D4.D20
 G = < a,b,c,d | a4=b2=c20=1, d2=a2, bab=cac-1=dad-1=a-1, cbc-1=a-1b, dbd-1=ab, dcd-1=a2c-1 >

Subgroups: 638 in 152 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, Q8⋊C4, C22⋊Q8, C2×SD16, C2×Q16, C2×C4○D4, C52C8, C40, Dic10, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, D4.7D4, Dic20, C2×C52C8, C4⋊Dic5, D10⋊C4, D4.D5, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, D42D5, C22×Dic5, C2×C5⋊D4, D4×C10, C10.Q16, D101C8, C5×D4⋊C4, D102Q8, C2×Dic20, C2×D4.D5, C2×D42D5, D4.D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C4○D8, C8.C22, D20, C22×D5, D4.7D4, C2×D20, D4×D5, C22⋊D20, D83D5, SD16⋊D5, D4.D20

Smallest permutation representation of D4.D20
On 160 points
Generators in S160
(1 113 26 70)(2 71 27 114)(3 115 28 72)(4 73 29 116)(5 117 30 74)(6 75 31 118)(7 119 32 76)(8 77 33 120)(9 101 34 78)(10 79 35 102)(11 103 36 80)(12 61 37 104)(13 105 38 62)(14 63 39 106)(15 107 40 64)(16 65 21 108)(17 109 22 66)(18 67 23 110)(19 111 24 68)(20 69 25 112)(41 150 84 124)(42 125 85 151)(43 152 86 126)(44 127 87 153)(45 154 88 128)(46 129 89 155)(47 156 90 130)(48 131 91 157)(49 158 92 132)(50 133 93 159)(51 160 94 134)(52 135 95 141)(53 142 96 136)(54 137 97 143)(55 144 98 138)(56 139 99 145)(57 146 100 140)(58 121 81 147)(59 148 82 122)(60 123 83 149)
(1 49)(2 159)(3 51)(4 141)(5 53)(6 143)(7 55)(8 145)(9 57)(10 147)(11 59)(12 149)(13 41)(14 151)(15 43)(16 153)(17 45)(18 155)(19 47)(20 157)(21 127)(22 88)(23 129)(24 90)(25 131)(26 92)(27 133)(28 94)(29 135)(30 96)(31 137)(32 98)(33 139)(34 100)(35 121)(36 82)(37 123)(38 84)(39 125)(40 86)(42 106)(44 108)(46 110)(48 112)(50 114)(52 116)(54 118)(56 120)(58 102)(60 104)(61 83)(62 150)(63 85)(64 152)(65 87)(66 154)(67 89)(68 156)(69 91)(70 158)(71 93)(72 160)(73 95)(74 142)(75 97)(76 144)(77 99)(78 146)(79 81)(80 148)(101 140)(103 122)(105 124)(107 126)(109 128)(111 130)(113 132)(115 134)(117 136)(119 138)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 25 26 20)(2 19 27 24)(3 23 28 18)(4 17 29 22)(5 21 30 16)(6 15 31 40)(7 39 32 14)(8 13 33 38)(9 37 34 12)(10 11 35 36)(41 56 84 99)(42 98 85 55)(43 54 86 97)(44 96 87 53)(45 52 88 95)(46 94 89 51)(47 50 90 93)(48 92 91 49)(57 60 100 83)(58 82 81 59)(61 78 104 101)(62 120 105 77)(63 76 106 119)(64 118 107 75)(65 74 108 117)(66 116 109 73)(67 72 110 115)(68 114 111 71)(69 70 112 113)(79 80 102 103)(121 148 147 122)(123 146 149 140)(124 139 150 145)(125 144 151 138)(126 137 152 143)(127 142 153 136)(128 135 154 141)(129 160 155 134)(130 133 156 159)(131 158 157 132)

G:=sub<Sym(160)| (1,113,26,70)(2,71,27,114)(3,115,28,72)(4,73,29,116)(5,117,30,74)(6,75,31,118)(7,119,32,76)(8,77,33,120)(9,101,34,78)(10,79,35,102)(11,103,36,80)(12,61,37,104)(13,105,38,62)(14,63,39,106)(15,107,40,64)(16,65,21,108)(17,109,22,66)(18,67,23,110)(19,111,24,68)(20,69,25,112)(41,150,84,124)(42,125,85,151)(43,152,86,126)(44,127,87,153)(45,154,88,128)(46,129,89,155)(47,156,90,130)(48,131,91,157)(49,158,92,132)(50,133,93,159)(51,160,94,134)(52,135,95,141)(53,142,96,136)(54,137,97,143)(55,144,98,138)(56,139,99,145)(57,146,100,140)(58,121,81,147)(59,148,82,122)(60,123,83,149), (1,49)(2,159)(3,51)(4,141)(5,53)(6,143)(7,55)(8,145)(9,57)(10,147)(11,59)(12,149)(13,41)(14,151)(15,43)(16,153)(17,45)(18,155)(19,47)(20,157)(21,127)(22,88)(23,129)(24,90)(25,131)(26,92)(27,133)(28,94)(29,135)(30,96)(31,137)(32,98)(33,139)(34,100)(35,121)(36,82)(37,123)(38,84)(39,125)(40,86)(42,106)(44,108)(46,110)(48,112)(50,114)(52,116)(54,118)(56,120)(58,102)(60,104)(61,83)(62,150)(63,85)(64,152)(65,87)(66,154)(67,89)(68,156)(69,91)(70,158)(71,93)(72,160)(73,95)(74,142)(75,97)(76,144)(77,99)(78,146)(79,81)(80,148)(101,140)(103,122)(105,124)(107,126)(109,128)(111,130)(113,132)(115,134)(117,136)(119,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,25,26,20)(2,19,27,24)(3,23,28,18)(4,17,29,22)(5,21,30,16)(6,15,31,40)(7,39,32,14)(8,13,33,38)(9,37,34,12)(10,11,35,36)(41,56,84,99)(42,98,85,55)(43,54,86,97)(44,96,87,53)(45,52,88,95)(46,94,89,51)(47,50,90,93)(48,92,91,49)(57,60,100,83)(58,82,81,59)(61,78,104,101)(62,120,105,77)(63,76,106,119)(64,118,107,75)(65,74,108,117)(66,116,109,73)(67,72,110,115)(68,114,111,71)(69,70,112,113)(79,80,102,103)(121,148,147,122)(123,146,149,140)(124,139,150,145)(125,144,151,138)(126,137,152,143)(127,142,153,136)(128,135,154,141)(129,160,155,134)(130,133,156,159)(131,158,157,132)>;

G:=Group( (1,113,26,70)(2,71,27,114)(3,115,28,72)(4,73,29,116)(5,117,30,74)(6,75,31,118)(7,119,32,76)(8,77,33,120)(9,101,34,78)(10,79,35,102)(11,103,36,80)(12,61,37,104)(13,105,38,62)(14,63,39,106)(15,107,40,64)(16,65,21,108)(17,109,22,66)(18,67,23,110)(19,111,24,68)(20,69,25,112)(41,150,84,124)(42,125,85,151)(43,152,86,126)(44,127,87,153)(45,154,88,128)(46,129,89,155)(47,156,90,130)(48,131,91,157)(49,158,92,132)(50,133,93,159)(51,160,94,134)(52,135,95,141)(53,142,96,136)(54,137,97,143)(55,144,98,138)(56,139,99,145)(57,146,100,140)(58,121,81,147)(59,148,82,122)(60,123,83,149), (1,49)(2,159)(3,51)(4,141)(5,53)(6,143)(7,55)(8,145)(9,57)(10,147)(11,59)(12,149)(13,41)(14,151)(15,43)(16,153)(17,45)(18,155)(19,47)(20,157)(21,127)(22,88)(23,129)(24,90)(25,131)(26,92)(27,133)(28,94)(29,135)(30,96)(31,137)(32,98)(33,139)(34,100)(35,121)(36,82)(37,123)(38,84)(39,125)(40,86)(42,106)(44,108)(46,110)(48,112)(50,114)(52,116)(54,118)(56,120)(58,102)(60,104)(61,83)(62,150)(63,85)(64,152)(65,87)(66,154)(67,89)(68,156)(69,91)(70,158)(71,93)(72,160)(73,95)(74,142)(75,97)(76,144)(77,99)(78,146)(79,81)(80,148)(101,140)(103,122)(105,124)(107,126)(109,128)(111,130)(113,132)(115,134)(117,136)(119,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,25,26,20)(2,19,27,24)(3,23,28,18)(4,17,29,22)(5,21,30,16)(6,15,31,40)(7,39,32,14)(8,13,33,38)(9,37,34,12)(10,11,35,36)(41,56,84,99)(42,98,85,55)(43,54,86,97)(44,96,87,53)(45,52,88,95)(46,94,89,51)(47,50,90,93)(48,92,91,49)(57,60,100,83)(58,82,81,59)(61,78,104,101)(62,120,105,77)(63,76,106,119)(64,118,107,75)(65,74,108,117)(66,116,109,73)(67,72,110,115)(68,114,111,71)(69,70,112,113)(79,80,102,103)(121,148,147,122)(123,146,149,140)(124,139,150,145)(125,144,151,138)(126,137,152,143)(127,142,153,136)(128,135,154,141)(129,160,155,134)(130,133,156,159)(131,158,157,132) );

G=PermutationGroup([[(1,113,26,70),(2,71,27,114),(3,115,28,72),(4,73,29,116),(5,117,30,74),(6,75,31,118),(7,119,32,76),(8,77,33,120),(9,101,34,78),(10,79,35,102),(11,103,36,80),(12,61,37,104),(13,105,38,62),(14,63,39,106),(15,107,40,64),(16,65,21,108),(17,109,22,66),(18,67,23,110),(19,111,24,68),(20,69,25,112),(41,150,84,124),(42,125,85,151),(43,152,86,126),(44,127,87,153),(45,154,88,128),(46,129,89,155),(47,156,90,130),(48,131,91,157),(49,158,92,132),(50,133,93,159),(51,160,94,134),(52,135,95,141),(53,142,96,136),(54,137,97,143),(55,144,98,138),(56,139,99,145),(57,146,100,140),(58,121,81,147),(59,148,82,122),(60,123,83,149)], [(1,49),(2,159),(3,51),(4,141),(5,53),(6,143),(7,55),(8,145),(9,57),(10,147),(11,59),(12,149),(13,41),(14,151),(15,43),(16,153),(17,45),(18,155),(19,47),(20,157),(21,127),(22,88),(23,129),(24,90),(25,131),(26,92),(27,133),(28,94),(29,135),(30,96),(31,137),(32,98),(33,139),(34,100),(35,121),(36,82),(37,123),(38,84),(39,125),(40,86),(42,106),(44,108),(46,110),(48,112),(50,114),(52,116),(54,118),(56,120),(58,102),(60,104),(61,83),(62,150),(63,85),(64,152),(65,87),(66,154),(67,89),(68,156),(69,91),(70,158),(71,93),(72,160),(73,95),(74,142),(75,97),(76,144),(77,99),(78,146),(79,81),(80,148),(101,140),(103,122),(105,124),(107,126),(109,128),(111,130),(113,132),(115,134),(117,136),(119,138)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,25,26,20),(2,19,27,24),(3,23,28,18),(4,17,29,22),(5,21,30,16),(6,15,31,40),(7,39,32,14),(8,13,33,38),(9,37,34,12),(10,11,35,36),(41,56,84,99),(42,98,85,55),(43,54,86,97),(44,96,87,53),(45,52,88,95),(46,94,89,51),(47,50,90,93),(48,92,91,49),(57,60,100,83),(58,82,81,59),(61,78,104,101),(62,120,105,77),(63,76,106,119),(64,118,107,75),(65,74,108,117),(66,116,109,73),(67,72,110,115),(68,114,111,71),(69,70,112,113),(79,80,102,103),(121,148,147,122),(123,146,149,140),(124,139,150,145),(125,144,151,138),(126,137,152,143),(127,142,153,136),(128,135,154,141),(129,160,155,134),(130,133,156,159),(131,158,157,132)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222224444444455888810···1010101010202020202020202040···40
size111144202281010202040224420202···28888444488884···4

47 irreducible representations

dim11111111222222222244444
type+++++++++++++++++-++--
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D10D10D10C4○D8D20C8.C22D4×D5D4×D5D83D5SD16⋊D5
kernelD4.D20C10.Q16D101C8C5×D4⋊C4D102Q8C2×Dic20C2×D4.D5C2×D42D5Dic10C2×Dic5C5×D4C22×D5D4⋊C4C4⋊C4C2×C8C2×D4C10D4C10C4C22C2C2
# reps11111111212122224812244

Matrix representation of D4.D20 in GL4(𝔽41) generated by

32000
40900
0010
0001
,
192700
142200
00400
00040
,
20900
242100
002730
001132
,
20900
12100
001114
00930
G:=sub<GL(4,GF(41))| [32,40,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[19,14,0,0,27,22,0,0,0,0,40,0,0,0,0,40],[20,24,0,0,9,21,0,0,0,0,27,11,0,0,30,32],[20,1,0,0,9,21,0,0,0,0,11,9,0,0,14,30] >;

D4.D20 in GAP, Magma, Sage, TeX

D_4.D_{20}
% in TeX

G:=Group("D4.D20");
// GroupNames label

G:=SmallGroup(320,410);
// by ID

G=gap.SmallGroup(320,410);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,254,219,226,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=a^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^-1*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽