Extensions 1→N→G→Q→1 with N=C2 and Q=D4×Dic5

Direct product G=N×Q with N=C2 and Q=D4×Dic5
dρLabelID
C2×D4×Dic5160C2xD4xDic5320,1467


Non-split extensions G=N.Q with N=C2 and Q=D4×Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(D4×Dic5) = C22⋊C4×Dic5central extension (φ=1)160C2.1(D4xDic5)320,568
C2.2(D4×Dic5) = C4⋊C4×Dic5central extension (φ=1)320C2.2(D4xDic5)320,602
C2.3(D4×Dic5) = D4×C52C8central extension (φ=1)160C2.3(D4xDic5)320,637
C2.4(D4×Dic5) = C24.47D10central stem extension (φ=1)160C2.4(D4xDic5)320,577
C2.5(D4×Dic5) = C24.8D10central stem extension (φ=1)160C2.5(D4xDic5)320,578
C2.6(D4×Dic5) = C4⋊C45Dic5central stem extension (φ=1)320C2.6(D4xDic5)320,608
C2.7(D4×Dic5) = C206(C4⋊C4)central stem extension (φ=1)320C2.7(D4xDic5)320,612
C2.8(D4×Dic5) = C42.47D10central stem extension (φ=1)160C2.8(D4xDic5)320,638
C2.9(D4×Dic5) = C207M4(2)central stem extension (φ=1)160C2.9(D4xDic5)320,639
C2.10(D4×Dic5) = D8×Dic5central stem extension (φ=1)160C2.10(D4xDic5)320,776
C2.11(D4×Dic5) = D8⋊Dic5central stem extension (φ=1)160C2.11(D4xDic5)320,779
C2.12(D4×Dic5) = SD16×Dic5central stem extension (φ=1)160C2.12(D4xDic5)320,788
C2.13(D4×Dic5) = SD16⋊Dic5central stem extension (φ=1)160C2.13(D4xDic5)320,791
C2.14(D4×Dic5) = Q16×Dic5central stem extension (φ=1)320C2.14(D4xDic5)320,810
C2.15(D4×Dic5) = Q16⋊Dic5central stem extension (φ=1)320C2.15(D4xDic5)320,811
C2.16(D4×Dic5) = D85Dic5central stem extension (φ=1)804C2.16(D4xDic5)320,823
C2.17(D4×Dic5) = D84Dic5central stem extension (φ=1)804C2.17(D4xDic5)320,824
C2.18(D4×Dic5) = C24.18D10central stem extension (φ=1)160C2.18(D4xDic5)320,847
C2.19(D4×Dic5) = C24.19D10central stem extension (φ=1)160C2.19(D4xDic5)320,848

׿
×
𝔽