direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4×Dic5, C23.17D10, C5⋊6(C4×D4), C20⋊6(C2×C4), (C5×D4)⋊6C4, C2.5(D4×D5), (C2×D4).7D5, C4⋊1(C2×Dic5), C4⋊Dic5⋊13C2, (C4×Dic5)⋊4C2, (D4×C10).4C2, (C2×C4).49D10, C10.37(C2×D4), C23.D5⋊7C2, C22⋊1(C2×Dic5), C10.28(C4○D4), C2.5(D4⋊2D5), (C2×C20).32C22, C10.38(C22×C4), (C2×C10).49C23, (C22×Dic5)⋊4C2, C2.6(C22×Dic5), C22.25(C22×D5), (C22×C10).17C22, (C2×Dic5).40C22, (C2×C10)⋊6(C2×C4), SmallGroup(160,155)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×Dic5
G = < a,b,c,d | a4=b2=c10=1, d2=c5, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 232 in 94 conjugacy classes, 51 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C4×D4, C2×Dic5, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C4×Dic5, C4⋊Dic5, C23.D5, C22×Dic5, D4×C10, D4×Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, Dic5, D10, C4×D4, C2×Dic5, C22×D5, D4×D5, D4⋊2D5, C22×Dic5, D4×Dic5
(1 45 28 38)(2 46 29 39)(3 47 30 40)(4 48 21 31)(5 49 22 32)(6 50 23 33)(7 41 24 34)(8 42 25 35)(9 43 26 36)(10 44 27 37)(11 62 77 57)(12 63 78 58)(13 64 79 59)(14 65 80 60)(15 66 71 51)(16 67 72 52)(17 68 73 53)(18 69 74 54)(19 70 75 55)(20 61 76 56)
(1 38)(2 39)(3 40)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 37)(11 62)(12 63)(13 64)(14 65)(15 66)(16 67)(17 68)(18 69)(19 70)(20 61)(21 48)(22 49)(23 50)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 57 6 52)(2 56 7 51)(3 55 8 60)(4 54 9 59)(5 53 10 58)(11 50 16 45)(12 49 17 44)(13 48 18 43)(14 47 19 42)(15 46 20 41)(21 69 26 64)(22 68 27 63)(23 67 28 62)(24 66 29 61)(25 65 30 70)(31 74 36 79)(32 73 37 78)(33 72 38 77)(34 71 39 76)(35 80 40 75)
G:=sub<Sym(80)| (1,45,28,38)(2,46,29,39)(3,47,30,40)(4,48,21,31)(5,49,22,32)(6,50,23,33)(7,41,24,34)(8,42,25,35)(9,43,26,36)(10,44,27,37)(11,62,77,57)(12,63,78,58)(13,64,79,59)(14,65,80,60)(15,66,71,51)(16,67,72,52)(17,68,73,53)(18,69,74,54)(19,70,75,55)(20,61,76,56), (1,38)(2,39)(3,40)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,62)(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,70)(20,61)(21,48)(22,49)(23,50)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,57,6,52)(2,56,7,51)(3,55,8,60)(4,54,9,59)(5,53,10,58)(11,50,16,45)(12,49,17,44)(13,48,18,43)(14,47,19,42)(15,46,20,41)(21,69,26,64)(22,68,27,63)(23,67,28,62)(24,66,29,61)(25,65,30,70)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75)>;
G:=Group( (1,45,28,38)(2,46,29,39)(3,47,30,40)(4,48,21,31)(5,49,22,32)(6,50,23,33)(7,41,24,34)(8,42,25,35)(9,43,26,36)(10,44,27,37)(11,62,77,57)(12,63,78,58)(13,64,79,59)(14,65,80,60)(15,66,71,51)(16,67,72,52)(17,68,73,53)(18,69,74,54)(19,70,75,55)(20,61,76,56), (1,38)(2,39)(3,40)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,62)(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,70)(20,61)(21,48)(22,49)(23,50)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,57,6,52)(2,56,7,51)(3,55,8,60)(4,54,9,59)(5,53,10,58)(11,50,16,45)(12,49,17,44)(13,48,18,43)(14,47,19,42)(15,46,20,41)(21,69,26,64)(22,68,27,63)(23,67,28,62)(24,66,29,61)(25,65,30,70)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75) );
G=PermutationGroup([[(1,45,28,38),(2,46,29,39),(3,47,30,40),(4,48,21,31),(5,49,22,32),(6,50,23,33),(7,41,24,34),(8,42,25,35),(9,43,26,36),(10,44,27,37),(11,62,77,57),(12,63,78,58),(13,64,79,59),(14,65,80,60),(15,66,71,51),(16,67,72,52),(17,68,73,53),(18,69,74,54),(19,70,75,55),(20,61,76,56)], [(1,38),(2,39),(3,40),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,37),(11,62),(12,63),(13,64),(14,65),(15,66),(16,67),(17,68),(18,69),(19,70),(20,61),(21,48),(22,49),(23,50),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,57,6,52),(2,56,7,51),(3,55,8,60),(4,54,9,59),(5,53,10,58),(11,50,16,45),(12,49,17,44),(13,48,18,43),(14,47,19,42),(15,46,20,41),(21,69,26,64),(22,68,27,63),(23,67,28,62),(24,66,29,61),(25,65,30,70),(31,74,36,79),(32,73,37,78),(33,72,38,77),(34,71,39,76),(35,80,40,75)]])
D4×Dic5 is a maximal subgroup of
Dic5.23D8 Dic5⋊4D8 D4.D5⋊5C4 Dic5⋊6SD16 Dic5.14D8 D4⋊Dic10 D4.Dic10 D4.2Dic10 D4⋊D5⋊6C4 Dic5⋊D8 D8⋊Dic5 (C2×D8).D5 Dic5⋊3SD16 SD16⋊Dic5 (C5×D4).D4 C5⋊C8⋊7D4 C20⋊2M4(2) C4×D4⋊2D5 D4⋊5Dic10 D4⋊6Dic10 C4×D4×D5 C42⋊11D10 C42.108D10 C24.56D10 C24.32D10 C24.33D10 C24.35D10 C20⋊(C4○D4) Dic10⋊19D4 C4⋊C4.178D10 C10.342+ 1+4 C10.352+ 1+4 C10.362+ 1+4 C4⋊C4⋊21D10 C10.732- 1+4 C10.432+ 1+4 C10.452+ 1+4 C10.462+ 1+4 C10.1152+ 1+4 C10.472+ 1+4 C4⋊C4.197D10 C10.802- 1+4 C10.1222+ 1+4 C10.852- 1+4 C42.139D10 C42.234D10 C42.143D10 C42.144D10 C42.166D10 C42.238D10 Dic10⋊11D4 C42.168D10 C24.38D10 C24.42D10 C10.1042- 1+4 C10.1062- 1+4 C10.1452+ 1+4 Dic15⋊8D4 Dic15⋊17D4
D4×Dic5 is a maximal quotient of
C24.47D10 C24.8D10 C4⋊C4⋊5Dic5 C20⋊6(C4⋊C4) C42.47D10 C20⋊7M4(2) D8⋊Dic5 SD16⋊Dic5 Q16⋊Dic5 D8⋊5Dic5 D8⋊4Dic5 C24.18D10 C24.19D10 Dic15⋊8D4 Dic15⋊17D4
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D5 | C4○D4 | D10 | Dic5 | D10 | D4×D5 | D4⋊2D5 |
kernel | D4×Dic5 | C4×Dic5 | C4⋊Dic5 | C23.D5 | C22×Dic5 | D4×C10 | C5×D4 | Dic5 | C2×D4 | C10 | C2×C4 | D4 | C23 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 8 | 2 | 2 | 2 | 2 | 8 | 4 | 2 | 2 |
Matrix representation of D4×Dic5 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 1 |
0 | 0 | 0 | 5 | 35 |
32 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 7 |
0 | 0 | 0 | 6 | 0 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,5,0,0,0,1,35],[32,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,7,0] >;
D4×Dic5 in GAP, Magma, Sage, TeX
D_4\times {\rm Dic}_5
% in TeX
G:=Group("D4xDic5");
// GroupNames label
G:=SmallGroup(160,155);
// by ID
G=gap.SmallGroup(160,155);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,188,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^10=1,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations