extension | φ:Q→Out N | d | ρ | Label | ID |
(Q8×Dic5)⋊1C2 = Dic5⋊7SD16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):1C2 | 320,415 |
(Q8×Dic5)⋊2C2 = Q8⋊D5⋊6C4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):2C2 | 320,444 |
(Q8×Dic5)⋊3C2 = SD16×Dic5 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):3C2 | 320,788 |
(Q8×Dic5)⋊4C2 = Dic5⋊5SD16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):4C2 | 320,790 |
(Q8×Dic5)⋊5C2 = SD16⋊Dic5 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):5C2 | 320,791 |
(Q8×Dic5)⋊6C2 = (C5×Q8).D4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):6C2 | 320,793 |
(Q8×Dic5)⋊7C2 = (C2×Q16)⋊D5 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):7C2 | 320,812 |
(Q8×Dic5)⋊8C2 = C42.125D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):8C2 | 320,1244 |
(Q8×Dic5)⋊9C2 = C42.126D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):9C2 | 320,1246 |
(Q8×Dic5)⋊10C2 = (Q8×Dic5)⋊C2 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):10C2 | 320,1294 |
(Q8×Dic5)⋊11C2 = C22⋊Q8⋊25D5 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):11C2 | 320,1296 |
(Q8×Dic5)⋊12C2 = C10.152- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):12C2 | 320,1297 |
(Q8×Dic5)⋊13C2 = C10.1182+ 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):13C2 | 320,1307 |
(Q8×Dic5)⋊14C2 = C10.212- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):14C2 | 320,1311 |
(Q8×Dic5)⋊15C2 = C10.232- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):15C2 | 320,1313 |
(Q8×Dic5)⋊16C2 = C10.772- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):16C2 | 320,1314 |
(Q8×Dic5)⋊17C2 = C10.242- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):17C2 | 320,1315 |
(Q8×Dic5)⋊18C2 = C42.139D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):18C2 | 320,1343 |
(Q8×Dic5)⋊19C2 = C42.234D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):19C2 | 320,1352 |
(Q8×Dic5)⋊20C2 = C42.143D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):20C2 | 320,1353 |
(Q8×Dic5)⋊21C2 = C42.144D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):21C2 | 320,1354 |
(Q8×Dic5)⋊22C2 = C42.241D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):22C2 | 320,1400 |
(Q8×Dic5)⋊23C2 = C42.176D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):23C2 | 320,1403 |
(Q8×Dic5)⋊24C2 = C42.177D10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):24C2 | 320,1404 |
(Q8×Dic5)⋊25C2 = C10.422- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):25C2 | 320,1484 |
(Q8×Dic5)⋊26C2 = Q8×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):26C2 | 320,1487 |
(Q8×Dic5)⋊27C2 = C10.452- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):27C2 | 320,1489 |
(Q8×Dic5)⋊28C2 = C10.1062- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):28C2 | 320,1499 |
(Q8×Dic5)⋊29C2 = C10.1072- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):29C2 | 320,1503 |
(Q8×Dic5)⋊30C2 = C10.1482+ 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 160 | | (Q8xDic5):30C2 | 320,1506 |
(Q8×Dic5)⋊31C2 = C4×Q8×D5 | φ: trivial image | 160 | | (Q8xDic5):31C2 | 320,1243 |
(Q8×Dic5)⋊32C2 = C4×Q8⋊2D5 | φ: trivial image | 160 | | (Q8xDic5):32C2 | 320,1245 |
(Q8×Dic5)⋊33C2 = C4○D4×Dic5 | φ: trivial image | 160 | | (Q8xDic5):33C2 | 320,1498 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(Q8×Dic5).1C2 = C5⋊Q16⋊5C4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).1C2 | 320,416 |
(Q8×Dic5).2C2 = Dic5⋊4Q16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).2C2 | 320,417 |
(Q8×Dic5).3C2 = Q8⋊Dic10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).3C2 | 320,418 |
(Q8×Dic5).4C2 = Dic5.9Q16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).4C2 | 320,421 |
(Q8×Dic5).5C2 = Q8.Dic10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).5C2 | 320,423 |
(Q8×Dic5).6C2 = Q8.2Dic10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).6C2 | 320,426 |
(Q8×Dic5).7C2 = Dic5⋊3Q16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).7C2 | 320,809 |
(Q8×Dic5).8C2 = Q16×Dic5 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).8C2 | 320,810 |
(Q8×Dic5).9C2 = Q16⋊Dic5 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).9C2 | 320,811 |
(Q8×Dic5).10C2 = Q8×Dic10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).10C2 | 320,1238 |
(Q8×Dic5).11C2 = Q8⋊5Dic10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).11C2 | 320,1241 |
(Q8×Dic5).12C2 = Q8⋊6Dic10 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).12C2 | 320,1242 |
(Q8×Dic5).13C2 = Dic10⋊8Q8 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).13C2 | 320,1393 |
(Q8×Dic5).14C2 = Dic5.12Q16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).14C2 | 320,268 |
(Q8×Dic5).15C2 = Q8×C5⋊C8 | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).15C2 | 320,1124 |
(Q8×Dic5).16C2 = C20.6M4(2) | φ: C2/C1 → C2 ⊆ Out Q8×Dic5 | 320 | | (Q8xDic5).16C2 | 320,1126 |