Extensions 1→N→G→Q→1 with N=Q8×Dic5 and Q=C2

Direct product G=N×Q with N=Q8×Dic5 and Q=C2
dρLabelID
C2×Q8×Dic5320C2xQ8xDic5320,1483

Semidirect products G=N:Q with N=Q8×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×Dic5)⋊1C2 = Dic57SD16φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):1C2320,415
(Q8×Dic5)⋊2C2 = Q8⋊D56C4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):2C2320,444
(Q8×Dic5)⋊3C2 = SD16×Dic5φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):3C2320,788
(Q8×Dic5)⋊4C2 = Dic55SD16φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):4C2320,790
(Q8×Dic5)⋊5C2 = SD16⋊Dic5φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):5C2320,791
(Q8×Dic5)⋊6C2 = (C5×Q8).D4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):6C2320,793
(Q8×Dic5)⋊7C2 = (C2×Q16)⋊D5φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):7C2320,812
(Q8×Dic5)⋊8C2 = C42.125D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):8C2320,1244
(Q8×Dic5)⋊9C2 = C42.126D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):9C2320,1246
(Q8×Dic5)⋊10C2 = (Q8×Dic5)⋊C2φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):10C2320,1294
(Q8×Dic5)⋊11C2 = C22⋊Q825D5φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):11C2320,1296
(Q8×Dic5)⋊12C2 = C10.152- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):12C2320,1297
(Q8×Dic5)⋊13C2 = C10.1182+ 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):13C2320,1307
(Q8×Dic5)⋊14C2 = C10.212- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):14C2320,1311
(Q8×Dic5)⋊15C2 = C10.232- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):15C2320,1313
(Q8×Dic5)⋊16C2 = C10.772- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):16C2320,1314
(Q8×Dic5)⋊17C2 = C10.242- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):17C2320,1315
(Q8×Dic5)⋊18C2 = C42.139D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):18C2320,1343
(Q8×Dic5)⋊19C2 = C42.234D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):19C2320,1352
(Q8×Dic5)⋊20C2 = C42.143D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):20C2320,1353
(Q8×Dic5)⋊21C2 = C42.144D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):21C2320,1354
(Q8×Dic5)⋊22C2 = C42.241D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):22C2320,1400
(Q8×Dic5)⋊23C2 = C42.176D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):23C2320,1403
(Q8×Dic5)⋊24C2 = C42.177D10φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):24C2320,1404
(Q8×Dic5)⋊25C2 = C10.422- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):25C2320,1484
(Q8×Dic5)⋊26C2 = Q8×C5⋊D4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):26C2320,1487
(Q8×Dic5)⋊27C2 = C10.452- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):27C2320,1489
(Q8×Dic5)⋊28C2 = C10.1062- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):28C2320,1499
(Q8×Dic5)⋊29C2 = C10.1072- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):29C2320,1503
(Q8×Dic5)⋊30C2 = C10.1482+ 1+4φ: C2/C1C2 ⊆ Out Q8×Dic5160(Q8xDic5):30C2320,1506
(Q8×Dic5)⋊31C2 = C4×Q8×D5φ: trivial image160(Q8xDic5):31C2320,1243
(Q8×Dic5)⋊32C2 = C4×Q82D5φ: trivial image160(Q8xDic5):32C2320,1245
(Q8×Dic5)⋊33C2 = C4○D4×Dic5φ: trivial image160(Q8xDic5):33C2320,1498

Non-split extensions G=N.Q with N=Q8×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×Dic5).1C2 = C5⋊Q165C4φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).1C2320,416
(Q8×Dic5).2C2 = Dic54Q16φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).2C2320,417
(Q8×Dic5).3C2 = Q8⋊Dic10φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).3C2320,418
(Q8×Dic5).4C2 = Dic5.9Q16φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).4C2320,421
(Q8×Dic5).5C2 = Q8.Dic10φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).5C2320,423
(Q8×Dic5).6C2 = Q8.2Dic10φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).6C2320,426
(Q8×Dic5).7C2 = Dic53Q16φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).7C2320,809
(Q8×Dic5).8C2 = Q16×Dic5φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).8C2320,810
(Q8×Dic5).9C2 = Q16⋊Dic5φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).9C2320,811
(Q8×Dic5).10C2 = Q8×Dic10φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).10C2320,1238
(Q8×Dic5).11C2 = Q85Dic10φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).11C2320,1241
(Q8×Dic5).12C2 = Q86Dic10φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).12C2320,1242
(Q8×Dic5).13C2 = Dic108Q8φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).13C2320,1393
(Q8×Dic5).14C2 = Dic5.12Q16φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).14C2320,268
(Q8×Dic5).15C2 = Q8×C5⋊C8φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).15C2320,1124
(Q8×Dic5).16C2 = C20.6M4(2)φ: C2/C1C2 ⊆ Out Q8×Dic5320(Q8xDic5).16C2320,1126

׿
×
𝔽