metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.772- 1+4, C4⋊C4.98D10, C22⋊Q8⋊19D5, (Q8×Dic5)⋊16C2, D10⋊3Q8⋊23C2, (C2×C20).63C23, (C2×Q8).132D10, C22⋊C4.63D10, C4.Dic10⋊25C2, C20.213(C4○D4), (C2×C10).186C24, (C22×C4).248D10, C4.102(D4⋊2D5), C23.11D10⋊9C2, C4⋊Dic5.220C22, (Q8×C10).116C22, C22.D20.3C2, (C22×D5).77C23, C23.195(C22×D5), C22.207(C23×D5), D10⋊C4.27C22, (C22×C10).214C23, (C22×C20).261C22, C5⋊7(C22.46C24), C22.10(Q8⋊2D5), (C4×Dic5).122C22, (C2×Dic5).250C23, C10.D4.34C22, C2.37(D4.10D10), C23.D5.125C22, (C22×Dic5).123C22, C4⋊C4⋊D5⋊21C2, C4⋊C4⋊7D5⋊30C2, (C2×C4⋊Dic5)⋊43C2, (C4×C5⋊D4).11C2, (C5×C22⋊Q8)⋊22C2, C10.115(C2×C4○D4), C2.49(C2×D4⋊2D5), C2.19(C2×Q8⋊2D5), (C2×C4×D5).112C22, (C2×C4).56(C22×D5), (C2×C10).27(C4○D4), (C5×C4⋊C4).167C22, (C2×C5⋊D4).141C22, (C5×C22⋊C4).41C22, SmallGroup(320,1314)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — C4×C5⋊D4 — C10.772- 1+4 |
Generators and relations for C10.772- 1+4
G = < a,b,c,d,e | a10=b4=c2=1, d2=b2, e2=a5b2, bab-1=cac=dad-1=a-1, ae=ea, cbc=b-1, dbd-1=a5b, be=eb, dcd-1=a5c, ce=ec, ede-1=a5b2d >
Subgroups: 646 in 214 conjugacy classes, 99 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22⋊Q8, C22.D4, C42.C2, C42⋊2C2, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×Q8, C22×D5, C22×C10, C22.46C24, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, Q8×C10, C23.11D10, C22.D20, C4.Dic10, C4.Dic10, C4⋊C4⋊7D5, C4⋊C4⋊D5, C2×C4⋊Dic5, C4×C5⋊D4, Q8×Dic5, D10⋊3Q8, C5×C22⋊Q8, C10.772- 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.46C24, D4⋊2D5, Q8⋊2D5, C23×D5, C2×D4⋊2D5, C2×Q8⋊2D5, D4.10D10, C10.772- 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 110 23 93)(2 109 24 92)(3 108 25 91)(4 107 26 100)(5 106 27 99)(6 105 28 98)(7 104 29 97)(8 103 30 96)(9 102 21 95)(10 101 22 94)(11 85 158 78)(12 84 159 77)(13 83 160 76)(14 82 151 75)(15 81 152 74)(16 90 153 73)(17 89 154 72)(18 88 155 71)(19 87 156 80)(20 86 157 79)(31 122 48 115)(32 121 49 114)(33 130 50 113)(34 129 41 112)(35 128 42 111)(36 127 43 120)(37 126 44 119)(38 125 45 118)(39 124 46 117)(40 123 47 116)(51 140 68 147)(52 139 69 146)(53 138 70 145)(54 137 61 144)(55 136 62 143)(56 135 63 142)(57 134 64 141)(58 133 65 150)(59 132 66 149)(60 131 67 148)
(2 10)(3 9)(4 8)(5 7)(11 16)(12 15)(13 14)(17 20)(18 19)(21 25)(22 24)(26 30)(27 29)(31 47)(32 46)(33 45)(34 44)(35 43)(36 42)(37 41)(38 50)(39 49)(40 48)(51 55)(52 54)(56 60)(57 59)(61 69)(62 68)(63 67)(64 66)(71 87)(72 86)(73 85)(74 84)(75 83)(76 82)(77 81)(78 90)(79 89)(80 88)(91 102)(92 101)(93 110)(94 109)(95 108)(96 107)(97 106)(98 105)(99 104)(100 103)(111 120)(112 119)(113 118)(114 117)(115 116)(121 124)(122 123)(125 130)(126 129)(127 128)(131 142)(132 141)(133 150)(134 149)(135 148)(136 147)(137 146)(138 145)(139 144)(140 143)(151 160)(152 159)(153 158)(154 157)(155 156)
(1 113 23 130)(2 112 24 129)(3 111 25 128)(4 120 26 127)(5 119 27 126)(6 118 28 125)(7 117 29 124)(8 116 30 123)(9 115 21 122)(10 114 22 121)(11 58 158 65)(12 57 159 64)(13 56 160 63)(14 55 151 62)(15 54 152 61)(16 53 153 70)(17 52 154 69)(18 51 155 68)(19 60 156 67)(20 59 157 66)(31 100 48 107)(32 99 49 106)(33 98 50 105)(34 97 41 104)(35 96 42 103)(36 95 43 102)(37 94 44 101)(38 93 45 110)(39 92 46 109)(40 91 47 108)(71 142 88 135)(72 141 89 134)(73 150 90 133)(74 149 81 132)(75 148 82 131)(76 147 83 140)(77 146 84 139)(78 145 85 138)(79 144 86 137)(80 143 87 136)
(1 53 28 65)(2 54 29 66)(3 55 30 67)(4 56 21 68)(5 57 22 69)(6 58 23 70)(7 59 24 61)(8 60 25 62)(9 51 26 63)(10 52 27 64)(11 125 153 113)(12 126 154 114)(13 127 155 115)(14 128 156 116)(15 129 157 117)(16 130 158 118)(17 121 159 119)(18 122 160 120)(19 123 151 111)(20 124 152 112)(31 83 43 71)(32 84 44 72)(33 85 45 73)(34 86 46 74)(35 87 47 75)(36 88 48 76)(37 89 49 77)(38 90 50 78)(39 81 41 79)(40 82 42 80)(91 143 103 131)(92 144 104 132)(93 145 105 133)(94 146 106 134)(95 147 107 135)(96 148 108 136)(97 149 109 137)(98 150 110 138)(99 141 101 139)(100 142 102 140)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,110,23,93)(2,109,24,92)(3,108,25,91)(4,107,26,100)(5,106,27,99)(6,105,28,98)(7,104,29,97)(8,103,30,96)(9,102,21,95)(10,101,22,94)(11,85,158,78)(12,84,159,77)(13,83,160,76)(14,82,151,75)(15,81,152,74)(16,90,153,73)(17,89,154,72)(18,88,155,71)(19,87,156,80)(20,86,157,79)(31,122,48,115)(32,121,49,114)(33,130,50,113)(34,129,41,112)(35,128,42,111)(36,127,43,120)(37,126,44,119)(38,125,45,118)(39,124,46,117)(40,123,47,116)(51,140,68,147)(52,139,69,146)(53,138,70,145)(54,137,61,144)(55,136,62,143)(56,135,63,142)(57,134,64,141)(58,133,65,150)(59,132,66,149)(60,131,67,148), (2,10)(3,9)(4,8)(5,7)(11,16)(12,15)(13,14)(17,20)(18,19)(21,25)(22,24)(26,30)(27,29)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,55)(52,54)(56,60)(57,59)(61,69)(62,68)(63,67)(64,66)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,90)(79,89)(80,88)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,120)(112,119)(113,118)(114,117)(115,116)(121,124)(122,123)(125,130)(126,129)(127,128)(131,142)(132,141)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143)(151,160)(152,159)(153,158)(154,157)(155,156), (1,113,23,130)(2,112,24,129)(3,111,25,128)(4,120,26,127)(5,119,27,126)(6,118,28,125)(7,117,29,124)(8,116,30,123)(9,115,21,122)(10,114,22,121)(11,58,158,65)(12,57,159,64)(13,56,160,63)(14,55,151,62)(15,54,152,61)(16,53,153,70)(17,52,154,69)(18,51,155,68)(19,60,156,67)(20,59,157,66)(31,100,48,107)(32,99,49,106)(33,98,50,105)(34,97,41,104)(35,96,42,103)(36,95,43,102)(37,94,44,101)(38,93,45,110)(39,92,46,109)(40,91,47,108)(71,142,88,135)(72,141,89,134)(73,150,90,133)(74,149,81,132)(75,148,82,131)(76,147,83,140)(77,146,84,139)(78,145,85,138)(79,144,86,137)(80,143,87,136), (1,53,28,65)(2,54,29,66)(3,55,30,67)(4,56,21,68)(5,57,22,69)(6,58,23,70)(7,59,24,61)(8,60,25,62)(9,51,26,63)(10,52,27,64)(11,125,153,113)(12,126,154,114)(13,127,155,115)(14,128,156,116)(15,129,157,117)(16,130,158,118)(17,121,159,119)(18,122,160,120)(19,123,151,111)(20,124,152,112)(31,83,43,71)(32,84,44,72)(33,85,45,73)(34,86,46,74)(35,87,47,75)(36,88,48,76)(37,89,49,77)(38,90,50,78)(39,81,41,79)(40,82,42,80)(91,143,103,131)(92,144,104,132)(93,145,105,133)(94,146,106,134)(95,147,107,135)(96,148,108,136)(97,149,109,137)(98,150,110,138)(99,141,101,139)(100,142,102,140)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,110,23,93)(2,109,24,92)(3,108,25,91)(4,107,26,100)(5,106,27,99)(6,105,28,98)(7,104,29,97)(8,103,30,96)(9,102,21,95)(10,101,22,94)(11,85,158,78)(12,84,159,77)(13,83,160,76)(14,82,151,75)(15,81,152,74)(16,90,153,73)(17,89,154,72)(18,88,155,71)(19,87,156,80)(20,86,157,79)(31,122,48,115)(32,121,49,114)(33,130,50,113)(34,129,41,112)(35,128,42,111)(36,127,43,120)(37,126,44,119)(38,125,45,118)(39,124,46,117)(40,123,47,116)(51,140,68,147)(52,139,69,146)(53,138,70,145)(54,137,61,144)(55,136,62,143)(56,135,63,142)(57,134,64,141)(58,133,65,150)(59,132,66,149)(60,131,67,148), (2,10)(3,9)(4,8)(5,7)(11,16)(12,15)(13,14)(17,20)(18,19)(21,25)(22,24)(26,30)(27,29)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,55)(52,54)(56,60)(57,59)(61,69)(62,68)(63,67)(64,66)(71,87)(72,86)(73,85)(74,84)(75,83)(76,82)(77,81)(78,90)(79,89)(80,88)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,120)(112,119)(113,118)(114,117)(115,116)(121,124)(122,123)(125,130)(126,129)(127,128)(131,142)(132,141)(133,150)(134,149)(135,148)(136,147)(137,146)(138,145)(139,144)(140,143)(151,160)(152,159)(153,158)(154,157)(155,156), (1,113,23,130)(2,112,24,129)(3,111,25,128)(4,120,26,127)(5,119,27,126)(6,118,28,125)(7,117,29,124)(8,116,30,123)(9,115,21,122)(10,114,22,121)(11,58,158,65)(12,57,159,64)(13,56,160,63)(14,55,151,62)(15,54,152,61)(16,53,153,70)(17,52,154,69)(18,51,155,68)(19,60,156,67)(20,59,157,66)(31,100,48,107)(32,99,49,106)(33,98,50,105)(34,97,41,104)(35,96,42,103)(36,95,43,102)(37,94,44,101)(38,93,45,110)(39,92,46,109)(40,91,47,108)(71,142,88,135)(72,141,89,134)(73,150,90,133)(74,149,81,132)(75,148,82,131)(76,147,83,140)(77,146,84,139)(78,145,85,138)(79,144,86,137)(80,143,87,136), (1,53,28,65)(2,54,29,66)(3,55,30,67)(4,56,21,68)(5,57,22,69)(6,58,23,70)(7,59,24,61)(8,60,25,62)(9,51,26,63)(10,52,27,64)(11,125,153,113)(12,126,154,114)(13,127,155,115)(14,128,156,116)(15,129,157,117)(16,130,158,118)(17,121,159,119)(18,122,160,120)(19,123,151,111)(20,124,152,112)(31,83,43,71)(32,84,44,72)(33,85,45,73)(34,86,46,74)(35,87,47,75)(36,88,48,76)(37,89,49,77)(38,90,50,78)(39,81,41,79)(40,82,42,80)(91,143,103,131)(92,144,104,132)(93,145,105,133)(94,146,106,134)(95,147,107,135)(96,148,108,136)(97,149,109,137)(98,150,110,138)(99,141,101,139)(100,142,102,140) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,110,23,93),(2,109,24,92),(3,108,25,91),(4,107,26,100),(5,106,27,99),(6,105,28,98),(7,104,29,97),(8,103,30,96),(9,102,21,95),(10,101,22,94),(11,85,158,78),(12,84,159,77),(13,83,160,76),(14,82,151,75),(15,81,152,74),(16,90,153,73),(17,89,154,72),(18,88,155,71),(19,87,156,80),(20,86,157,79),(31,122,48,115),(32,121,49,114),(33,130,50,113),(34,129,41,112),(35,128,42,111),(36,127,43,120),(37,126,44,119),(38,125,45,118),(39,124,46,117),(40,123,47,116),(51,140,68,147),(52,139,69,146),(53,138,70,145),(54,137,61,144),(55,136,62,143),(56,135,63,142),(57,134,64,141),(58,133,65,150),(59,132,66,149),(60,131,67,148)], [(2,10),(3,9),(4,8),(5,7),(11,16),(12,15),(13,14),(17,20),(18,19),(21,25),(22,24),(26,30),(27,29),(31,47),(32,46),(33,45),(34,44),(35,43),(36,42),(37,41),(38,50),(39,49),(40,48),(51,55),(52,54),(56,60),(57,59),(61,69),(62,68),(63,67),(64,66),(71,87),(72,86),(73,85),(74,84),(75,83),(76,82),(77,81),(78,90),(79,89),(80,88),(91,102),(92,101),(93,110),(94,109),(95,108),(96,107),(97,106),(98,105),(99,104),(100,103),(111,120),(112,119),(113,118),(114,117),(115,116),(121,124),(122,123),(125,130),(126,129),(127,128),(131,142),(132,141),(133,150),(134,149),(135,148),(136,147),(137,146),(138,145),(139,144),(140,143),(151,160),(152,159),(153,158),(154,157),(155,156)], [(1,113,23,130),(2,112,24,129),(3,111,25,128),(4,120,26,127),(5,119,27,126),(6,118,28,125),(7,117,29,124),(8,116,30,123),(9,115,21,122),(10,114,22,121),(11,58,158,65),(12,57,159,64),(13,56,160,63),(14,55,151,62),(15,54,152,61),(16,53,153,70),(17,52,154,69),(18,51,155,68),(19,60,156,67),(20,59,157,66),(31,100,48,107),(32,99,49,106),(33,98,50,105),(34,97,41,104),(35,96,42,103),(36,95,43,102),(37,94,44,101),(38,93,45,110),(39,92,46,109),(40,91,47,108),(71,142,88,135),(72,141,89,134),(73,150,90,133),(74,149,81,132),(75,148,82,131),(76,147,83,140),(77,146,84,139),(78,145,85,138),(79,144,86,137),(80,143,87,136)], [(1,53,28,65),(2,54,29,66),(3,55,30,67),(4,56,21,68),(5,57,22,69),(6,58,23,70),(7,59,24,61),(8,60,25,62),(9,51,26,63),(10,52,27,64),(11,125,153,113),(12,126,154,114),(13,127,155,115),(14,128,156,116),(15,129,157,117),(16,130,158,118),(17,121,159,119),(18,122,160,120),(19,123,151,111),(20,124,152,112),(31,83,43,71),(32,84,44,72),(33,85,45,73),(34,86,46,74),(35,87,47,75),(36,88,48,76),(37,89,49,77),(38,90,50,78),(39,81,41,79),(40,82,42,80),(91,143,103,131),(92,144,104,132),(93,145,105,133),(94,146,106,134),(95,147,107,135),(96,148,108,136),(97,149,109,137),(98,150,110,138),(99,141,101,139),(100,142,102,140)]])
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | ··· | 4G | 4H | ··· | 4O | 4P | 4Q | 4R | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 2 | 2 | 4 | ··· | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | 2- 1+4 | D4⋊2D5 | Q8⋊2D5 | D4.10D10 |
kernel | C10.772- 1+4 | C23.11D10 | C22.D20 | C4.Dic10 | C4⋊C4⋊7D5 | C4⋊C4⋊D5 | C2×C4⋊Dic5 | C4×C5⋊D4 | Q8×Dic5 | D10⋊3Q8 | C5×C22⋊Q8 | C22⋊Q8 | C20 | C2×C10 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×Q8 | C10 | C4 | C22 | C2 |
# reps | 1 | 2 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 6 | 2 | 2 | 1 | 4 | 4 | 4 |
Matrix representation of C10.772- 1+4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
0 | 0 | 0 | 0 | 9 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 40 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,7,34,0,0,0,0,7,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,0,9,0,0,0,0,9,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;
C10.772- 1+4 in GAP, Magma, Sage, TeX
C_{10}._{77}2_-^{1+4}
% in TeX
G:=Group("C10.77ES-(2,2)");
// GroupNames label
G:=SmallGroup(320,1314);
// by ID
G=gap.SmallGroup(320,1314);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,675,570,185,192,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=b^2,e^2=a^5*b^2,b*a*b^-1=c*a*c=d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations