Copied to
clipboard

## G = C10.212- 1+4order 320 = 26·5

### 21st non-split extension by C10 of 2- 1+4 acting via 2- 1+4/C2×Q8=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2×C10 — C10.212- 1+4
 Chief series C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C4×D5 — D5×C4⋊C4 — C10.212- 1+4
 Lower central C5 — C2×C10 — C10.212- 1+4
 Upper central C1 — C22 — C22⋊Q8

Generators and relations for C10.212- 1+4
G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=a5b2, e2=b2, ab=ba, cac-1=dad-1=a-1, ae=ea, cbc-1=a5b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=b2d >

Subgroups: 646 in 214 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×12], C22, C22 [×7], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×15], D4 [×2], Q8 [×2], C23, C23, D5 [×2], C10 [×3], C10, C42 [×5], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×2], C4⋊C4 [×13], C22×C4, C22×C4 [×3], C2×D4, C2×Q8, Dic5 [×7], C20 [×2], C20 [×5], D10 [×2], D10 [×2], C2×C10, C2×C10 [×3], C2×C4⋊C4, C42⋊C2 [×3], C4×D4, C4×Q8, C22⋊Q8, C22⋊Q8, C22.D4 [×2], C42.C2 [×3], C422C2 [×2], C4×D5 [×6], C2×Dic5 [×3], C2×Dic5 [×4], C5⋊D4 [×2], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C5×Q8 [×2], C22×D5, C22×C10, C22.46C24, C4×Dic5, C4×Dic5 [×4], C10.D4, C10.D4 [×6], C4⋊Dic5 [×2], C4⋊Dic5 [×4], D10⋊C4, D10⋊C4 [×2], C23.D5, C23.D5 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4, C5×C4⋊C4 [×2], C2×C4×D5, C2×C4×D5 [×2], C2×C5⋊D4, C22×C20, Q8×C10, C23.D10 [×2], D10.12D4 [×2], Dic5.Q8 [×2], C4.Dic10, D5×C4⋊C4, C4⋊C47D5 [×2], C23.21D10, C4×C5⋊D4, Q8×Dic5, D103Q8, C5×C22⋊Q8, C10.212- 1+4
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2- 1+4, C22×D5 [×7], C22.46C24, D42D5 [×2], C23×D5, C2×D42D5, Q8.10D10, D5×C4○D4, C10.212- 1+4

Smallest permutation representation of C10.212- 1+4
On 160 points
Generators in S160
```(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 118 13 108)(2 119 14 109)(3 120 15 110)(4 111 16 101)(5 112 17 102)(6 113 18 103)(7 114 19 104)(8 115 20 105)(9 116 11 106)(10 117 12 107)(21 96 31 86)(22 97 32 87)(23 98 33 88)(24 99 34 89)(25 100 35 90)(26 91 36 81)(27 92 37 82)(28 93 38 83)(29 94 39 84)(30 95 40 85)(41 151 51 141)(42 152 52 142)(43 153 53 143)(44 154 54 144)(45 155 55 145)(46 156 56 146)(47 157 57 147)(48 158 58 148)(49 159 59 149)(50 160 60 150)(61 131 71 121)(62 132 72 122)(63 133 73 123)(64 134 74 124)(65 135 75 125)(66 136 76 126)(67 137 77 127)(68 138 78 128)(69 139 79 129)(70 140 80 130)
(1 108 6 103)(2 107 7 102)(3 106 8 101)(4 105 9 110)(5 104 10 109)(11 120 16 115)(12 119 17 114)(13 118 18 113)(14 117 19 112)(15 116 20 111)(21 95 26 100)(22 94 27 99)(23 93 28 98)(24 92 29 97)(25 91 30 96)(31 85 36 90)(32 84 37 89)(33 83 38 88)(34 82 39 87)(35 81 40 86)(41 145 46 150)(42 144 47 149)(43 143 48 148)(44 142 49 147)(45 141 50 146)(51 155 56 160)(52 154 57 159)(53 153 58 158)(54 152 59 157)(55 151 60 156)(61 140 66 135)(62 139 67 134)(63 138 68 133)(64 137 69 132)(65 136 70 131)(71 130 76 125)(72 129 77 124)(73 128 78 123)(74 127 79 122)(75 126 80 121)
(1 48 18 53)(2 47 19 52)(3 46 20 51)(4 45 11 60)(5 44 12 59)(6 43 13 58)(7 42 14 57)(8 41 15 56)(9 50 16 55)(10 49 17 54)(21 75 36 70)(22 74 37 69)(23 73 38 68)(24 72 39 67)(25 71 40 66)(26 80 31 65)(27 79 32 64)(28 78 33 63)(29 77 34 62)(30 76 35 61)(81 140 96 125)(82 139 97 124)(83 138 98 123)(84 137 99 122)(85 136 100 121)(86 135 91 130)(87 134 92 129)(88 133 93 128)(89 132 94 127)(90 131 95 126)(101 145 116 160)(102 144 117 159)(103 143 118 158)(104 142 119 157)(105 141 120 156)(106 150 111 155)(107 149 112 154)(108 148 113 153)(109 147 114 152)(110 146 115 151)
(1 93 13 83)(2 94 14 84)(3 95 15 85)(4 96 16 86)(5 97 17 87)(6 98 18 88)(7 99 19 89)(8 100 20 90)(9 91 11 81)(10 92 12 82)(21 111 31 101)(22 112 32 102)(23 113 33 103)(24 114 34 104)(25 115 35 105)(26 116 36 106)(27 117 37 107)(28 118 38 108)(29 119 39 109)(30 120 40 110)(41 131 51 121)(42 132 52 122)(43 133 53 123)(44 134 54 124)(45 135 55 125)(46 136 56 126)(47 137 57 127)(48 138 58 128)(49 139 59 129)(50 140 60 130)(61 151 71 141)(62 152 72 142)(63 153 73 143)(64 154 74 144)(65 155 75 145)(66 156 76 146)(67 157 77 147)(68 158 78 148)(69 159 79 149)(70 160 80 150)```

`G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,118,13,108)(2,119,14,109)(3,120,15,110)(4,111,16,101)(5,112,17,102)(6,113,18,103)(7,114,19,104)(8,115,20,105)(9,116,11,106)(10,117,12,107)(21,96,31,86)(22,97,32,87)(23,98,33,88)(24,99,34,89)(25,100,35,90)(26,91,36,81)(27,92,37,82)(28,93,38,83)(29,94,39,84)(30,95,40,85)(41,151,51,141)(42,152,52,142)(43,153,53,143)(44,154,54,144)(45,155,55,145)(46,156,56,146)(47,157,57,147)(48,158,58,148)(49,159,59,149)(50,160,60,150)(61,131,71,121)(62,132,72,122)(63,133,73,123)(64,134,74,124)(65,135,75,125)(66,136,76,126)(67,137,77,127)(68,138,78,128)(69,139,79,129)(70,140,80,130), (1,108,6,103)(2,107,7,102)(3,106,8,101)(4,105,9,110)(5,104,10,109)(11,120,16,115)(12,119,17,114)(13,118,18,113)(14,117,19,112)(15,116,20,111)(21,95,26,100)(22,94,27,99)(23,93,28,98)(24,92,29,97)(25,91,30,96)(31,85,36,90)(32,84,37,89)(33,83,38,88)(34,82,39,87)(35,81,40,86)(41,145,46,150)(42,144,47,149)(43,143,48,148)(44,142,49,147)(45,141,50,146)(51,155,56,160)(52,154,57,159)(53,153,58,158)(54,152,59,157)(55,151,60,156)(61,140,66,135)(62,139,67,134)(63,138,68,133)(64,137,69,132)(65,136,70,131)(71,130,76,125)(72,129,77,124)(73,128,78,123)(74,127,79,122)(75,126,80,121), (1,48,18,53)(2,47,19,52)(3,46,20,51)(4,45,11,60)(5,44,12,59)(6,43,13,58)(7,42,14,57)(8,41,15,56)(9,50,16,55)(10,49,17,54)(21,75,36,70)(22,74,37,69)(23,73,38,68)(24,72,39,67)(25,71,40,66)(26,80,31,65)(27,79,32,64)(28,78,33,63)(29,77,34,62)(30,76,35,61)(81,140,96,125)(82,139,97,124)(83,138,98,123)(84,137,99,122)(85,136,100,121)(86,135,91,130)(87,134,92,129)(88,133,93,128)(89,132,94,127)(90,131,95,126)(101,145,116,160)(102,144,117,159)(103,143,118,158)(104,142,119,157)(105,141,120,156)(106,150,111,155)(107,149,112,154)(108,148,113,153)(109,147,114,152)(110,146,115,151), (1,93,13,83)(2,94,14,84)(3,95,15,85)(4,96,16,86)(5,97,17,87)(6,98,18,88)(7,99,19,89)(8,100,20,90)(9,91,11,81)(10,92,12,82)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,118,13,108)(2,119,14,109)(3,120,15,110)(4,111,16,101)(5,112,17,102)(6,113,18,103)(7,114,19,104)(8,115,20,105)(9,116,11,106)(10,117,12,107)(21,96,31,86)(22,97,32,87)(23,98,33,88)(24,99,34,89)(25,100,35,90)(26,91,36,81)(27,92,37,82)(28,93,38,83)(29,94,39,84)(30,95,40,85)(41,151,51,141)(42,152,52,142)(43,153,53,143)(44,154,54,144)(45,155,55,145)(46,156,56,146)(47,157,57,147)(48,158,58,148)(49,159,59,149)(50,160,60,150)(61,131,71,121)(62,132,72,122)(63,133,73,123)(64,134,74,124)(65,135,75,125)(66,136,76,126)(67,137,77,127)(68,138,78,128)(69,139,79,129)(70,140,80,130), (1,108,6,103)(2,107,7,102)(3,106,8,101)(4,105,9,110)(5,104,10,109)(11,120,16,115)(12,119,17,114)(13,118,18,113)(14,117,19,112)(15,116,20,111)(21,95,26,100)(22,94,27,99)(23,93,28,98)(24,92,29,97)(25,91,30,96)(31,85,36,90)(32,84,37,89)(33,83,38,88)(34,82,39,87)(35,81,40,86)(41,145,46,150)(42,144,47,149)(43,143,48,148)(44,142,49,147)(45,141,50,146)(51,155,56,160)(52,154,57,159)(53,153,58,158)(54,152,59,157)(55,151,60,156)(61,140,66,135)(62,139,67,134)(63,138,68,133)(64,137,69,132)(65,136,70,131)(71,130,76,125)(72,129,77,124)(73,128,78,123)(74,127,79,122)(75,126,80,121), (1,48,18,53)(2,47,19,52)(3,46,20,51)(4,45,11,60)(5,44,12,59)(6,43,13,58)(7,42,14,57)(8,41,15,56)(9,50,16,55)(10,49,17,54)(21,75,36,70)(22,74,37,69)(23,73,38,68)(24,72,39,67)(25,71,40,66)(26,80,31,65)(27,79,32,64)(28,78,33,63)(29,77,34,62)(30,76,35,61)(81,140,96,125)(82,139,97,124)(83,138,98,123)(84,137,99,122)(85,136,100,121)(86,135,91,130)(87,134,92,129)(88,133,93,128)(89,132,94,127)(90,131,95,126)(101,145,116,160)(102,144,117,159)(103,143,118,158)(104,142,119,157)(105,141,120,156)(106,150,111,155)(107,149,112,154)(108,148,113,153)(109,147,114,152)(110,146,115,151), (1,93,13,83)(2,94,14,84)(3,95,15,85)(4,96,16,86)(5,97,17,87)(6,98,18,88)(7,99,19,89)(8,100,20,90)(9,91,11,81)(10,92,12,82)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150) );`

`G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,118,13,108),(2,119,14,109),(3,120,15,110),(4,111,16,101),(5,112,17,102),(6,113,18,103),(7,114,19,104),(8,115,20,105),(9,116,11,106),(10,117,12,107),(21,96,31,86),(22,97,32,87),(23,98,33,88),(24,99,34,89),(25,100,35,90),(26,91,36,81),(27,92,37,82),(28,93,38,83),(29,94,39,84),(30,95,40,85),(41,151,51,141),(42,152,52,142),(43,153,53,143),(44,154,54,144),(45,155,55,145),(46,156,56,146),(47,157,57,147),(48,158,58,148),(49,159,59,149),(50,160,60,150),(61,131,71,121),(62,132,72,122),(63,133,73,123),(64,134,74,124),(65,135,75,125),(66,136,76,126),(67,137,77,127),(68,138,78,128),(69,139,79,129),(70,140,80,130)], [(1,108,6,103),(2,107,7,102),(3,106,8,101),(4,105,9,110),(5,104,10,109),(11,120,16,115),(12,119,17,114),(13,118,18,113),(14,117,19,112),(15,116,20,111),(21,95,26,100),(22,94,27,99),(23,93,28,98),(24,92,29,97),(25,91,30,96),(31,85,36,90),(32,84,37,89),(33,83,38,88),(34,82,39,87),(35,81,40,86),(41,145,46,150),(42,144,47,149),(43,143,48,148),(44,142,49,147),(45,141,50,146),(51,155,56,160),(52,154,57,159),(53,153,58,158),(54,152,59,157),(55,151,60,156),(61,140,66,135),(62,139,67,134),(63,138,68,133),(64,137,69,132),(65,136,70,131),(71,130,76,125),(72,129,77,124),(73,128,78,123),(74,127,79,122),(75,126,80,121)], [(1,48,18,53),(2,47,19,52),(3,46,20,51),(4,45,11,60),(5,44,12,59),(6,43,13,58),(7,42,14,57),(8,41,15,56),(9,50,16,55),(10,49,17,54),(21,75,36,70),(22,74,37,69),(23,73,38,68),(24,72,39,67),(25,71,40,66),(26,80,31,65),(27,79,32,64),(28,78,33,63),(29,77,34,62),(30,76,35,61),(81,140,96,125),(82,139,97,124),(83,138,98,123),(84,137,99,122),(85,136,100,121),(86,135,91,130),(87,134,92,129),(88,133,93,128),(89,132,94,127),(90,131,95,126),(101,145,116,160),(102,144,117,159),(103,143,118,158),(104,142,119,157),(105,141,120,156),(106,150,111,155),(107,149,112,154),(108,148,113,153),(109,147,114,152),(110,146,115,151)], [(1,93,13,83),(2,94,14,84),(3,95,15,85),(4,96,16,86),(5,97,17,87),(6,98,18,88),(7,99,19,89),(8,100,20,90),(9,91,11,81),(10,92,12,82),(21,111,31,101),(22,112,32,102),(23,113,33,103),(24,114,34,104),(25,115,35,105),(26,116,36,106),(27,117,37,107),(28,118,38,108),(29,119,39,109),(30,120,40,110),(41,131,51,121),(42,132,52,122),(43,133,53,123),(44,134,54,124),(45,135,55,125),(46,136,56,126),(47,137,57,127),(48,138,58,128),(49,139,59,129),(50,140,60,130),(61,151,71,141),(62,152,72,142),(63,153,73,143),(64,154,74,144),(65,155,75,145),(66,156,76,146),(67,157,77,147),(68,158,78,148),(69,159,79,149),(70,160,80,150)])`

53 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 4A 4B 4C 4D 4E 4F 4G 4H 4I ··· 4N 4O 4P 4Q 4R 5A 5B 10A ··· 10F 10G 10H 10I 10J 20A ··· 20H 20I ··· 20P order 1 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 ··· 4 4 4 4 4 5 5 10 ··· 10 10 10 10 10 20 ··· 20 20 ··· 20 size 1 1 1 1 4 10 10 2 2 2 2 4 4 4 4 10 ··· 10 20 20 20 20 2 2 2 ··· 2 4 4 4 4 4 ··· 4 8 ··· 8

53 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 4 4 4 4 type + + + + + + + + + + + + + + + + + - - image C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 D5 C4○D4 C4○D4 D10 D10 D10 D10 2- 1+4 D4⋊2D5 Q8.10D10 D5×C4○D4 kernel C10.212- 1+4 C23.D10 D10.12D4 Dic5.Q8 C4.Dic10 D5×C4⋊C4 C4⋊C4⋊7D5 C23.21D10 C4×C5⋊D4 Q8×Dic5 D10⋊3Q8 C5×C22⋊Q8 C22⋊Q8 C20 D10 C22⋊C4 C4⋊C4 C22×C4 C2×Q8 C10 C4 C2 C2 # reps 1 2 2 2 1 1 2 1 1 1 1 1 2 4 4 4 6 2 2 1 4 4 4

Matrix representation of C10.212- 1+4 in GL6(𝔽41)

 40 0 0 0 0 0 0 40 0 0 0 0 0 0 40 35 0 0 0 0 6 35 0 0 0 0 0 0 40 0 0 0 0 0 0 40
,
 16 9 0 0 0 0 40 25 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 9
,
 25 32 0 0 0 0 24 16 0 0 0 0 0 0 6 35 0 0 0 0 40 35 0 0 0 0 0 0 32 0 0 0 0 0 0 32
,
 32 0 0 0 0 0 0 32 0 0 0 0 0 0 35 6 0 0 0 0 1 6 0 0 0 0 0 0 39 26 0 0 0 0 33 2
,
 40 0 0 0 0 0 0 40 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 9 16 0 0 0 0 0 32

`G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,6,0,0,0,0,35,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[16,40,0,0,0,0,9,25,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[25,24,0,0,0,0,32,16,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,35,1,0,0,0,0,6,6,0,0,0,0,0,0,39,33,0,0,0,0,26,2],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,16,32] >;`

C10.212- 1+4 in GAP, Magma, Sage, TeX

`C_{10}._{21}2_-^{1+4}`
`% in TeX`

`G:=Group("C10.21ES-(2,2)");`
`// GroupNames label`

`G:=SmallGroup(320,1311);`
`// by ID`

`G=gap.SmallGroup(320,1311);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,1571,297,12550]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=a^5*b^2,e^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=a^5*b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;`
`// generators/relations`

׿
×
𝔽