metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×Q16)⋊2D5, (C5×Q8).8D4, (Q8×Dic5)⋊7C2, (C2×C8).37D10, (C10×Q16)⋊12C2, C20.185(C2×D4), (C2×Q8).61D10, Q8.3(C5⋊D4), C5⋊7(Q8.D4), C10.79(C4○D8), Q8⋊Dic5⋊32C2, C20.8Q8⋊29C2, (C2×Dic5).83D4, C22.276(D4×D5), D20⋊5C4.12C2, C20.106(C4○D4), C4.14(D4⋊2D5), (C2×C20).459C23, (C2×C40).251C22, C20.23D4.7C2, (Q8×C10).88C22, C2.16(Q8.D10), C10.120(C4⋊D4), C2.27(Q16⋊D5), (C2×D20).128C22, C10.77(C8.C22), C4⋊Dic5.182C22, (C4×Dic5).61C22, C2.29(Dic5⋊D4), C4.47(C2×C5⋊D4), (C2×Q8⋊D5).8C2, (C2×C10).370(C2×D4), (C2×C4).547(C22×D5), (C2×C5⋊2C8).164C22, SmallGroup(320,812)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2×Q16)⋊D5
G = < a,b,c,d,e | a2=b8=d5=e2=1, c2=b4, ab=ba, ece=ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, ebe=ab-1, cd=dc, ede=d-1 >
Subgroups: 454 in 112 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×Q8, C4.4D4, C2×SD16, C2×Q16, C5⋊2C8, C40, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, Q8.D4, C2×C5⋊2C8, C4×Dic5, C4×Dic5, C4⋊Dic5, C4⋊Dic5, D10⋊C4, Q8⋊D5, C2×C40, C5×Q16, C2×D20, Q8×C10, C20.8Q8, D20⋊5C4, Q8⋊Dic5, C2×Q8⋊D5, Q8×Dic5, C20.23D4, C10×Q16, (C2×Q16)⋊D5
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C4○D8, C8.C22, C5⋊D4, C22×D5, Q8.D4, D4×D5, D4⋊2D5, C2×C5⋊D4, Q16⋊D5, Q8.D10, Dic5⋊D4, (C2×Q16)⋊D5
(1 147)(2 148)(3 149)(4 150)(5 151)(6 152)(7 145)(8 146)(9 58)(10 59)(11 60)(12 61)(13 62)(14 63)(15 64)(16 57)(17 106)(18 107)(19 108)(20 109)(21 110)(22 111)(23 112)(24 105)(25 86)(26 87)(27 88)(28 81)(29 82)(30 83)(31 84)(32 85)(33 76)(34 77)(35 78)(36 79)(37 80)(38 73)(39 74)(40 75)(41 127)(42 128)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 154)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 153)(65 140)(66 141)(67 142)(68 143)(69 144)(70 137)(71 138)(72 139)(89 117)(90 118)(91 119)(92 120)(93 113)(94 114)(95 115)(96 116)(97 134)(98 135)(99 136)(100 129)(101 130)(102 131)(103 132)(104 133)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 12 5 16)(2 11 6 15)(3 10 7 14)(4 9 8 13)(17 77 21 73)(18 76 22 80)(19 75 23 79)(20 74 24 78)(25 91 29 95)(26 90 30 94)(27 89 31 93)(28 96 32 92)(33 111 37 107)(34 110 38 106)(35 109 39 105)(36 108 40 112)(41 132 45 136)(42 131 46 135)(43 130 47 134)(44 129 48 133)(49 141 53 137)(50 140 54 144)(51 139 55 143)(52 138 56 142)(57 147 61 151)(58 146 62 150)(59 145 63 149)(60 152 64 148)(65 159 69 155)(66 158 70 154)(67 157 71 153)(68 156 72 160)(81 116 85 120)(82 115 86 119)(83 114 87 118)(84 113 88 117)(97 121 101 125)(98 128 102 124)(99 127 103 123)(100 126 104 122)
(1 65 125 31 105)(2 66 126 32 106)(3 67 127 25 107)(4 68 128 26 108)(5 69 121 27 109)(6 70 122 28 110)(7 71 123 29 111)(8 72 124 30 112)(9 156 102 90 40)(10 157 103 91 33)(11 158 104 92 34)(12 159 97 93 35)(13 160 98 94 36)(14 153 99 95 37)(15 154 100 96 38)(16 155 101 89 39)(17 148 141 48 85)(18 149 142 41 86)(19 150 143 42 87)(20 151 144 43 88)(21 152 137 44 81)(22 145 138 45 82)(23 146 139 46 83)(24 147 140 47 84)(49 129 116 73 64)(50 130 117 74 57)(51 131 118 75 58)(52 132 119 76 59)(53 133 120 77 60)(54 134 113 78 61)(55 135 114 79 62)(56 136 115 80 63)
(1 105)(2 23)(3 111)(4 21)(5 109)(6 19)(7 107)(8 17)(9 38)(10 80)(11 36)(12 78)(13 34)(14 76)(15 40)(16 74)(18 145)(20 151)(22 149)(24 147)(25 71)(26 137)(27 69)(28 143)(29 67)(30 141)(31 65)(32 139)(33 63)(35 61)(37 59)(39 57)(41 45)(42 122)(44 128)(46 126)(48 124)(49 118)(50 89)(51 116)(52 95)(53 114)(54 93)(55 120)(56 91)(58 73)(60 79)(62 77)(64 75)(66 83)(68 81)(70 87)(72 85)(82 142)(84 140)(86 138)(88 144)(90 154)(92 160)(94 158)(96 156)(97 134)(98 104)(99 132)(100 102)(101 130)(103 136)(106 146)(108 152)(110 150)(112 148)(113 159)(115 157)(117 155)(119 153)(123 127)(129 131)(133 135)
G:=sub<Sym(160)| (1,147)(2,148)(3,149)(4,150)(5,151)(6,152)(7,145)(8,146)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,57)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,105)(25,86)(26,87)(27,88)(28,81)(29,82)(30,83)(31,84)(32,85)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(41,127)(42,128)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,153)(65,140)(66,141)(67,142)(68,143)(69,144)(70,137)(71,138)(72,139)(89,117)(90,118)(91,119)(92,120)(93,113)(94,114)(95,115)(96,116)(97,134)(98,135)(99,136)(100,129)(101,130)(102,131)(103,132)(104,133), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,12,5,16)(2,11,6,15)(3,10,7,14)(4,9,8,13)(17,77,21,73)(18,76,22,80)(19,75,23,79)(20,74,24,78)(25,91,29,95)(26,90,30,94)(27,89,31,93)(28,96,32,92)(33,111,37,107)(34,110,38,106)(35,109,39,105)(36,108,40,112)(41,132,45,136)(42,131,46,135)(43,130,47,134)(44,129,48,133)(49,141,53,137)(50,140,54,144)(51,139,55,143)(52,138,56,142)(57,147,61,151)(58,146,62,150)(59,145,63,149)(60,152,64,148)(65,159,69,155)(66,158,70,154)(67,157,71,153)(68,156,72,160)(81,116,85,120)(82,115,86,119)(83,114,87,118)(84,113,88,117)(97,121,101,125)(98,128,102,124)(99,127,103,123)(100,126,104,122), (1,65,125,31,105)(2,66,126,32,106)(3,67,127,25,107)(4,68,128,26,108)(5,69,121,27,109)(6,70,122,28,110)(7,71,123,29,111)(8,72,124,30,112)(9,156,102,90,40)(10,157,103,91,33)(11,158,104,92,34)(12,159,97,93,35)(13,160,98,94,36)(14,153,99,95,37)(15,154,100,96,38)(16,155,101,89,39)(17,148,141,48,85)(18,149,142,41,86)(19,150,143,42,87)(20,151,144,43,88)(21,152,137,44,81)(22,145,138,45,82)(23,146,139,46,83)(24,147,140,47,84)(49,129,116,73,64)(50,130,117,74,57)(51,131,118,75,58)(52,132,119,76,59)(53,133,120,77,60)(54,134,113,78,61)(55,135,114,79,62)(56,136,115,80,63), (1,105)(2,23)(3,111)(4,21)(5,109)(6,19)(7,107)(8,17)(9,38)(10,80)(11,36)(12,78)(13,34)(14,76)(15,40)(16,74)(18,145)(20,151)(22,149)(24,147)(25,71)(26,137)(27,69)(28,143)(29,67)(30,141)(31,65)(32,139)(33,63)(35,61)(37,59)(39,57)(41,45)(42,122)(44,128)(46,126)(48,124)(49,118)(50,89)(51,116)(52,95)(53,114)(54,93)(55,120)(56,91)(58,73)(60,79)(62,77)(64,75)(66,83)(68,81)(70,87)(72,85)(82,142)(84,140)(86,138)(88,144)(90,154)(92,160)(94,158)(96,156)(97,134)(98,104)(99,132)(100,102)(101,130)(103,136)(106,146)(108,152)(110,150)(112,148)(113,159)(115,157)(117,155)(119,153)(123,127)(129,131)(133,135)>;
G:=Group( (1,147)(2,148)(3,149)(4,150)(5,151)(6,152)(7,145)(8,146)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,57)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,105)(25,86)(26,87)(27,88)(28,81)(29,82)(30,83)(31,84)(32,85)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(41,127)(42,128)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,153)(65,140)(66,141)(67,142)(68,143)(69,144)(70,137)(71,138)(72,139)(89,117)(90,118)(91,119)(92,120)(93,113)(94,114)(95,115)(96,116)(97,134)(98,135)(99,136)(100,129)(101,130)(102,131)(103,132)(104,133), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,12,5,16)(2,11,6,15)(3,10,7,14)(4,9,8,13)(17,77,21,73)(18,76,22,80)(19,75,23,79)(20,74,24,78)(25,91,29,95)(26,90,30,94)(27,89,31,93)(28,96,32,92)(33,111,37,107)(34,110,38,106)(35,109,39,105)(36,108,40,112)(41,132,45,136)(42,131,46,135)(43,130,47,134)(44,129,48,133)(49,141,53,137)(50,140,54,144)(51,139,55,143)(52,138,56,142)(57,147,61,151)(58,146,62,150)(59,145,63,149)(60,152,64,148)(65,159,69,155)(66,158,70,154)(67,157,71,153)(68,156,72,160)(81,116,85,120)(82,115,86,119)(83,114,87,118)(84,113,88,117)(97,121,101,125)(98,128,102,124)(99,127,103,123)(100,126,104,122), (1,65,125,31,105)(2,66,126,32,106)(3,67,127,25,107)(4,68,128,26,108)(5,69,121,27,109)(6,70,122,28,110)(7,71,123,29,111)(8,72,124,30,112)(9,156,102,90,40)(10,157,103,91,33)(11,158,104,92,34)(12,159,97,93,35)(13,160,98,94,36)(14,153,99,95,37)(15,154,100,96,38)(16,155,101,89,39)(17,148,141,48,85)(18,149,142,41,86)(19,150,143,42,87)(20,151,144,43,88)(21,152,137,44,81)(22,145,138,45,82)(23,146,139,46,83)(24,147,140,47,84)(49,129,116,73,64)(50,130,117,74,57)(51,131,118,75,58)(52,132,119,76,59)(53,133,120,77,60)(54,134,113,78,61)(55,135,114,79,62)(56,136,115,80,63), (1,105)(2,23)(3,111)(4,21)(5,109)(6,19)(7,107)(8,17)(9,38)(10,80)(11,36)(12,78)(13,34)(14,76)(15,40)(16,74)(18,145)(20,151)(22,149)(24,147)(25,71)(26,137)(27,69)(28,143)(29,67)(30,141)(31,65)(32,139)(33,63)(35,61)(37,59)(39,57)(41,45)(42,122)(44,128)(46,126)(48,124)(49,118)(50,89)(51,116)(52,95)(53,114)(54,93)(55,120)(56,91)(58,73)(60,79)(62,77)(64,75)(66,83)(68,81)(70,87)(72,85)(82,142)(84,140)(86,138)(88,144)(90,154)(92,160)(94,158)(96,156)(97,134)(98,104)(99,132)(100,102)(101,130)(103,136)(106,146)(108,152)(110,150)(112,148)(113,159)(115,157)(117,155)(119,153)(123,127)(129,131)(133,135) );
G=PermutationGroup([[(1,147),(2,148),(3,149),(4,150),(5,151),(6,152),(7,145),(8,146),(9,58),(10,59),(11,60),(12,61),(13,62),(14,63),(15,64),(16,57),(17,106),(18,107),(19,108),(20,109),(21,110),(22,111),(23,112),(24,105),(25,86),(26,87),(27,88),(28,81),(29,82),(30,83),(31,84),(32,85),(33,76),(34,77),(35,78),(36,79),(37,80),(38,73),(39,74),(40,75),(41,127),(42,128),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,154),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,153),(65,140),(66,141),(67,142),(68,143),(69,144),(70,137),(71,138),(72,139),(89,117),(90,118),(91,119),(92,120),(93,113),(94,114),(95,115),(96,116),(97,134),(98,135),(99,136),(100,129),(101,130),(102,131),(103,132),(104,133)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,12,5,16),(2,11,6,15),(3,10,7,14),(4,9,8,13),(17,77,21,73),(18,76,22,80),(19,75,23,79),(20,74,24,78),(25,91,29,95),(26,90,30,94),(27,89,31,93),(28,96,32,92),(33,111,37,107),(34,110,38,106),(35,109,39,105),(36,108,40,112),(41,132,45,136),(42,131,46,135),(43,130,47,134),(44,129,48,133),(49,141,53,137),(50,140,54,144),(51,139,55,143),(52,138,56,142),(57,147,61,151),(58,146,62,150),(59,145,63,149),(60,152,64,148),(65,159,69,155),(66,158,70,154),(67,157,71,153),(68,156,72,160),(81,116,85,120),(82,115,86,119),(83,114,87,118),(84,113,88,117),(97,121,101,125),(98,128,102,124),(99,127,103,123),(100,126,104,122)], [(1,65,125,31,105),(2,66,126,32,106),(3,67,127,25,107),(4,68,128,26,108),(5,69,121,27,109),(6,70,122,28,110),(7,71,123,29,111),(8,72,124,30,112),(9,156,102,90,40),(10,157,103,91,33),(11,158,104,92,34),(12,159,97,93,35),(13,160,98,94,36),(14,153,99,95,37),(15,154,100,96,38),(16,155,101,89,39),(17,148,141,48,85),(18,149,142,41,86),(19,150,143,42,87),(20,151,144,43,88),(21,152,137,44,81),(22,145,138,45,82),(23,146,139,46,83),(24,147,140,47,84),(49,129,116,73,64),(50,130,117,74,57),(51,131,118,75,58),(52,132,119,76,59),(53,133,120,77,60),(54,134,113,78,61),(55,135,114,79,62),(56,136,115,80,63)], [(1,105),(2,23),(3,111),(4,21),(5,109),(6,19),(7,107),(8,17),(9,38),(10,80),(11,36),(12,78),(13,34),(14,76),(15,40),(16,74),(18,145),(20,151),(22,149),(24,147),(25,71),(26,137),(27,69),(28,143),(29,67),(30,141),(31,65),(32,139),(33,63),(35,61),(37,59),(39,57),(41,45),(42,122),(44,128),(46,126),(48,124),(49,118),(50,89),(51,116),(52,95),(53,114),(54,93),(55,120),(56,91),(58,73),(60,79),(62,77),(64,75),(66,83),(68,81),(70,87),(72,85),(82,142),(84,140),(86,138),(88,144),(90,154),(92,160),(94,158),(96,156),(97,134),(98,104),(99,132),(100,102),(101,130),(103,136),(106,146),(108,152),(110,150),(112,148),(113,159),(115,157),(117,155),(119,153),(123,127),(129,131),(133,135)]])
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 40 | 2 | 2 | 4 | 4 | 8 | 10 | 10 | 20 | 20 | 20 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | C4○D4 | D10 | D10 | C4○D8 | C5⋊D4 | C8.C22 | D4⋊2D5 | D4×D5 | Q16⋊D5 | Q8.D10 |
kernel | (C2×Q16)⋊D5 | C20.8Q8 | D20⋊5C4 | Q8⋊Dic5 | C2×Q8⋊D5 | Q8×Dic5 | C20.23D4 | C10×Q16 | C2×Dic5 | C5×Q8 | C2×Q16 | C20 | C2×C8 | C2×Q8 | C10 | Q8 | C10 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of (C2×Q16)⋊D5 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 0 |
9 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 15 |
0 | 0 | 0 | 0 | 30 | 24 |
40 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 2 | 9 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 33 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 33 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 18 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,9,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,30,0,0,0,0,15,24],[40,0,0,0,0,0,2,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,2,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,33,0,0,0,0,1,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,40,33,0,0,0,0,0,1,0,0,0,0,0,0,1,18,0,0,0,0,0,40] >;
(C2×Q16)⋊D5 in GAP, Magma, Sage, TeX
(C_2\times Q_{16})\rtimes D_5
% in TeX
G:=Group("(C2xQ16):D5");
// GroupNames label
G:=SmallGroup(320,812);
// by ID
G=gap.SmallGroup(320,812);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,232,1094,135,184,570,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^8=d^5=e^2=1,c^2=b^4,a*b=b*a,e*c*e=a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e=a*b^-1,c*d=d*c,e*d*e=d^-1>;
// generators/relations