Extensions 1→N→G→Q→1 with N=C4 and Q=D40

Direct product G=N×Q with N=C4 and Q=D40
dρLabelID
C4×D40160C4xD40320,319

Semidirect products G=N:Q with N=C4 and Q=D40
extensionφ:Q→Aut NdρLabelID
C41D40 = C204D8φ: D40/C40C2 ⊆ Aut C4160C4:1D40320,322
C42D40 = C4⋊D40φ: D40/D20C2 ⊆ Aut C4160C4:2D40320,470

Non-split extensions G=N.Q with N=C4 and Q=D40
extensionφ:Q→Aut NdρLabelID
C4.1D40 = D160φ: D40/C40C2 ⊆ Aut C41602+C4.1D40320,6
C4.2D40 = C160⋊C2φ: D40/C40C2 ⊆ Aut C41602C4.2D40320,7
C4.3D40 = Dic80φ: D40/C40C2 ⊆ Aut C43202-C4.3D40320,8
C4.4D40 = C408Q8φ: D40/C40C2 ⊆ Aut C4320C4.4D40320,309
C4.5D40 = C4.5D40φ: D40/C40C2 ⊆ Aut C4160C4.5D40320,321
C4.6D40 = C2×D80φ: D40/C40C2 ⊆ Aut C4160C4.6D40320,529
C4.7D40 = C2×C16⋊D5φ: D40/C40C2 ⊆ Aut C4160C4.7D40320,530
C4.8D40 = C2×Dic40φ: D40/C40C2 ⊆ Aut C4320C4.8D40320,532
C4.9D40 = C4.D40φ: D40/D20C2 ⊆ Aut C4160C4.9D40320,43
C4.10D40 = C20.2D8φ: D40/D20C2 ⊆ Aut C4320C4.10D40320,44
C4.11D40 = D40.4C4φ: D40/D20C2 ⊆ Aut C4804+C4.11D40320,74
C4.12D40 = C20.4D8φ: D40/D20C2 ⊆ Aut C41604-C4.12D40320,75
C4.13D40 = D204Q8φ: D40/D20C2 ⊆ Aut C4160C4.13D40320,473
C4.14D40 = D80⋊C2φ: D40/D20C2 ⊆ Aut C4804+C4.14D40320,535
C4.15D40 = C16.D10φ: D40/D20C2 ⊆ Aut C41604-C4.15D40320,536
C4.16D40 = C405C8central extension (φ=1)320C4.16D40320,16
C4.17D40 = D203C8central extension (φ=1)160C4.17D40320,17
C4.18D40 = C80.6C4central extension (φ=1)1602C4.18D40320,64
C4.19D40 = D40.3C4central extension (φ=1)1602C4.19D40320,68
C4.20D40 = D807C2central extension (φ=1)1602C4.20D40320,531

׿
×
𝔽