Copied to
clipboard

G = D204Q8order 320 = 26·5

2nd semidirect product of D20 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D204Q8, C20.13D8, C4.13D40, C42.37D10, C4⋊C84D5, C10.8(C2×D8), C4.44(Q8×D5), C405C412C2, C52(D4⋊Q8), C2.10(C2×D40), (C2×C8).22D10, C202Q813C2, (C4×D20).12C2, (C2×C4).134D20, (C2×C20).123D4, C20.103(C2×Q8), D205C4.3C2, (C2×C40).25C22, (C4×C20).72C22, C20.287(C4○D4), (C2×C20).756C23, C22.119(C2×D20), C10.31(C22⋊Q8), C4⋊Dic5.19C22, C4.111(D42D5), C2.12(D102Q8), C2.19(C8.D10), (C2×D20).202C22, C10.16(C8.C22), (C5×C4⋊C8)⋊6C2, (C2×C10).139(C2×D4), (C2×C4).701(C22×D5), SmallGroup(320,473)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D204Q8
C1C5C10C20C2×C20C2×D20C4×D20 — D204Q8
C5C10C2×C20 — D204Q8
C1C22C42C4⋊C8

Generators and relations for D204Q8
 G = < a,b,c,d | a20=b2=c4=1, d2=c2, bab=cac-1=a-1, ad=da, cbc-1=a3b, bd=db, dcd-1=c-1 >

Subgroups: 518 in 108 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, C2×Q8, Dic5, C20, C20, C20, D10, C2×C10, D4⋊C4, C4⋊C8, C2.D8, C4×D4, C4⋊Q8, C40, Dic10, C4×D5, D20, D20, C2×Dic5, C2×C20, C22×D5, D4⋊Q8, C4⋊Dic5, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, C405C4, D205C4, C5×C4⋊C8, C202Q8, C4×D20, D204Q8
Quotients: C1, C2, C22, D4, Q8, C23, D5, D8, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C2×D8, C8.C22, D20, C22×D5, D4⋊Q8, D40, C2×D20, D42D5, Q8×D5, D102Q8, C2×D40, C8.D10, D204Q8

Smallest permutation representation of D204Q8
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 64)(2 63)(3 62)(4 61)(5 80)(6 79)(7 78)(8 77)(9 76)(10 75)(11 74)(12 73)(13 72)(14 71)(15 70)(16 69)(17 68)(18 67)(19 66)(20 65)(21 160)(22 159)(23 158)(24 157)(25 156)(26 155)(27 154)(28 153)(29 152)(30 151)(31 150)(32 149)(33 148)(34 147)(35 146)(36 145)(37 144)(38 143)(39 142)(40 141)(41 102)(42 101)(43 120)(44 119)(45 118)(46 117)(47 116)(48 115)(49 114)(50 113)(51 112)(52 111)(53 110)(54 109)(55 108)(56 107)(57 106)(58 105)(59 104)(60 103)(81 128)(82 127)(83 126)(84 125)(85 124)(86 123)(87 122)(88 121)(89 140)(90 139)(91 138)(92 137)(93 136)(94 135)(95 134)(96 133)(97 132)(98 131)(99 130)(100 129)
(1 83 65 122)(2 82 66 121)(3 81 67 140)(4 100 68 139)(5 99 69 138)(6 98 70 137)(7 97 71 136)(8 96 72 135)(9 95 73 134)(10 94 74 133)(11 93 75 132)(12 92 76 131)(13 91 77 130)(14 90 78 129)(15 89 79 128)(16 88 80 127)(17 87 61 126)(18 86 62 125)(19 85 63 124)(20 84 64 123)(21 58 151 111)(22 57 152 110)(23 56 153 109)(24 55 154 108)(25 54 155 107)(26 53 156 106)(27 52 157 105)(28 51 158 104)(29 50 159 103)(30 49 160 102)(31 48 141 101)(32 47 142 120)(33 46 143 119)(34 45 144 118)(35 44 145 117)(36 43 146 116)(37 42 147 115)(38 41 148 114)(39 60 149 113)(40 59 150 112)
(1 156 65 26)(2 157 66 27)(3 158 67 28)(4 159 68 29)(5 160 69 30)(6 141 70 31)(7 142 71 32)(8 143 72 33)(9 144 73 34)(10 145 74 35)(11 146 75 36)(12 147 76 37)(13 148 77 38)(14 149 78 39)(15 150 79 40)(16 151 80 21)(17 152 61 22)(18 153 62 23)(19 154 63 24)(20 155 64 25)(41 130 114 91)(42 131 115 92)(43 132 116 93)(44 133 117 94)(45 134 118 95)(46 135 119 96)(47 136 120 97)(48 137 101 98)(49 138 102 99)(50 139 103 100)(51 140 104 81)(52 121 105 82)(53 122 106 83)(54 123 107 84)(55 124 108 85)(56 125 109 86)(57 126 110 87)(58 127 111 88)(59 128 112 89)(60 129 113 90)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,64)(2,63)(3,62)(4,61)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(41,102)(42,101)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,112)(52,111)(53,110)(54,109)(55,108)(56,107)(57,106)(58,105)(59,104)(60,103)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,140)(90,139)(91,138)(92,137)(93,136)(94,135)(95,134)(96,133)(97,132)(98,131)(99,130)(100,129), (1,83,65,122)(2,82,66,121)(3,81,67,140)(4,100,68,139)(5,99,69,138)(6,98,70,137)(7,97,71,136)(8,96,72,135)(9,95,73,134)(10,94,74,133)(11,93,75,132)(12,92,76,131)(13,91,77,130)(14,90,78,129)(15,89,79,128)(16,88,80,127)(17,87,61,126)(18,86,62,125)(19,85,63,124)(20,84,64,123)(21,58,151,111)(22,57,152,110)(23,56,153,109)(24,55,154,108)(25,54,155,107)(26,53,156,106)(27,52,157,105)(28,51,158,104)(29,50,159,103)(30,49,160,102)(31,48,141,101)(32,47,142,120)(33,46,143,119)(34,45,144,118)(35,44,145,117)(36,43,146,116)(37,42,147,115)(38,41,148,114)(39,60,149,113)(40,59,150,112), (1,156,65,26)(2,157,66,27)(3,158,67,28)(4,159,68,29)(5,160,69,30)(6,141,70,31)(7,142,71,32)(8,143,72,33)(9,144,73,34)(10,145,74,35)(11,146,75,36)(12,147,76,37)(13,148,77,38)(14,149,78,39)(15,150,79,40)(16,151,80,21)(17,152,61,22)(18,153,62,23)(19,154,63,24)(20,155,64,25)(41,130,114,91)(42,131,115,92)(43,132,116,93)(44,133,117,94)(45,134,118,95)(46,135,119,96)(47,136,120,97)(48,137,101,98)(49,138,102,99)(50,139,103,100)(51,140,104,81)(52,121,105,82)(53,122,106,83)(54,123,107,84)(55,124,108,85)(56,125,109,86)(57,126,110,87)(58,127,111,88)(59,128,112,89)(60,129,113,90)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,64)(2,63)(3,62)(4,61)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,160)(22,159)(23,158)(24,157)(25,156)(26,155)(27,154)(28,153)(29,152)(30,151)(31,150)(32,149)(33,148)(34,147)(35,146)(36,145)(37,144)(38,143)(39,142)(40,141)(41,102)(42,101)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,112)(52,111)(53,110)(54,109)(55,108)(56,107)(57,106)(58,105)(59,104)(60,103)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,140)(90,139)(91,138)(92,137)(93,136)(94,135)(95,134)(96,133)(97,132)(98,131)(99,130)(100,129), (1,83,65,122)(2,82,66,121)(3,81,67,140)(4,100,68,139)(5,99,69,138)(6,98,70,137)(7,97,71,136)(8,96,72,135)(9,95,73,134)(10,94,74,133)(11,93,75,132)(12,92,76,131)(13,91,77,130)(14,90,78,129)(15,89,79,128)(16,88,80,127)(17,87,61,126)(18,86,62,125)(19,85,63,124)(20,84,64,123)(21,58,151,111)(22,57,152,110)(23,56,153,109)(24,55,154,108)(25,54,155,107)(26,53,156,106)(27,52,157,105)(28,51,158,104)(29,50,159,103)(30,49,160,102)(31,48,141,101)(32,47,142,120)(33,46,143,119)(34,45,144,118)(35,44,145,117)(36,43,146,116)(37,42,147,115)(38,41,148,114)(39,60,149,113)(40,59,150,112), (1,156,65,26)(2,157,66,27)(3,158,67,28)(4,159,68,29)(5,160,69,30)(6,141,70,31)(7,142,71,32)(8,143,72,33)(9,144,73,34)(10,145,74,35)(11,146,75,36)(12,147,76,37)(13,148,77,38)(14,149,78,39)(15,150,79,40)(16,151,80,21)(17,152,61,22)(18,153,62,23)(19,154,63,24)(20,155,64,25)(41,130,114,91)(42,131,115,92)(43,132,116,93)(44,133,117,94)(45,134,118,95)(46,135,119,96)(47,136,120,97)(48,137,101,98)(49,138,102,99)(50,139,103,100)(51,140,104,81)(52,121,105,82)(53,122,106,83)(54,123,107,84)(55,124,108,85)(56,125,109,86)(57,126,110,87)(58,127,111,88)(59,128,112,89)(60,129,113,90) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,64),(2,63),(3,62),(4,61),(5,80),(6,79),(7,78),(8,77),(9,76),(10,75),(11,74),(12,73),(13,72),(14,71),(15,70),(16,69),(17,68),(18,67),(19,66),(20,65),(21,160),(22,159),(23,158),(24,157),(25,156),(26,155),(27,154),(28,153),(29,152),(30,151),(31,150),(32,149),(33,148),(34,147),(35,146),(36,145),(37,144),(38,143),(39,142),(40,141),(41,102),(42,101),(43,120),(44,119),(45,118),(46,117),(47,116),(48,115),(49,114),(50,113),(51,112),(52,111),(53,110),(54,109),(55,108),(56,107),(57,106),(58,105),(59,104),(60,103),(81,128),(82,127),(83,126),(84,125),(85,124),(86,123),(87,122),(88,121),(89,140),(90,139),(91,138),(92,137),(93,136),(94,135),(95,134),(96,133),(97,132),(98,131),(99,130),(100,129)], [(1,83,65,122),(2,82,66,121),(3,81,67,140),(4,100,68,139),(5,99,69,138),(6,98,70,137),(7,97,71,136),(8,96,72,135),(9,95,73,134),(10,94,74,133),(11,93,75,132),(12,92,76,131),(13,91,77,130),(14,90,78,129),(15,89,79,128),(16,88,80,127),(17,87,61,126),(18,86,62,125),(19,85,63,124),(20,84,64,123),(21,58,151,111),(22,57,152,110),(23,56,153,109),(24,55,154,108),(25,54,155,107),(26,53,156,106),(27,52,157,105),(28,51,158,104),(29,50,159,103),(30,49,160,102),(31,48,141,101),(32,47,142,120),(33,46,143,119),(34,45,144,118),(35,44,145,117),(36,43,146,116),(37,42,147,115),(38,41,148,114),(39,60,149,113),(40,59,150,112)], [(1,156,65,26),(2,157,66,27),(3,158,67,28),(4,159,68,29),(5,160,69,30),(6,141,70,31),(7,142,71,32),(8,143,72,33),(9,144,73,34),(10,145,74,35),(11,146,75,36),(12,147,76,37),(13,148,77,38),(14,149,78,39),(15,150,79,40),(16,151,80,21),(17,152,61,22),(18,153,62,23),(19,154,63,24),(20,155,64,25),(41,130,114,91),(42,131,115,92),(43,132,116,93),(44,133,117,94),(45,134,118,95),(46,135,119,96),(47,136,120,97),(48,137,101,98),(49,138,102,99),(50,139,103,100),(51,140,104,81),(52,121,105,82),(53,122,106,83),(54,123,107,84),(55,124,108,85),(56,125,109,86),(57,126,110,87),(58,127,111,88),(59,128,112,89),(60,129,113,90)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F20A···20H20I···20P40A···40P
order12222244444444455888810···1020···2020···2040···40
size1111202022224202040402244442···22···24···44···4

59 irreducible representations

dim1111112222222224444
type++++++-+++++++----
imageC1C2C2C2C2C2Q8D4D5D8C4○D4D10D10D20D40C8.C22D42D5Q8×D5C8.D10
kernelD204Q8C405C4D205C4C5×C4⋊C8C202Q8C4×D20D20C2×C20C4⋊C8C20C20C42C2×C8C2×C4C4C10C4C4C2
# reps12211122242248161224

Matrix representation of D204Q8 in GL4(𝔽41) generated by

323000
112700
00400
00040
,
323000
11900
0010
00040
,
201500
392100
0001
00400
,
1000
0100
00320
0009
G:=sub<GL(4,GF(41))| [32,11,0,0,30,27,0,0,0,0,40,0,0,0,0,40],[32,11,0,0,30,9,0,0,0,0,1,0,0,0,0,40],[20,39,0,0,15,21,0,0,0,0,0,40,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,32,0,0,0,0,9] >;

D204Q8 in GAP, Magma, Sage, TeX

D_{20}\rtimes_4Q_8
% in TeX

G:=Group("D20:4Q8");
// GroupNames label

G:=SmallGroup(320,473);
// by ID

G=gap.SmallGroup(320,473);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,219,310,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=c^2,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽