Copied to
clipboard

G = C2xD10.D4order 320 = 26·5

Direct product of C2 and D10.D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD10.D4, (C22xC4):3F5, (C2xD20):20C4, (C22xC20):7C4, D10.1(C2xD4), (C23xD5):6C4, C10:1(C23:C4), C22:F5:1C22, C23.37(C2xF5), (C22xD5).64D4, (C22xD20).7C2, D10.9(C22:C4), C22.7(C22xF5), (C2xD20).208C22, (C23xD5).86C22, C22.44(C22:F5), (C22xD5).145C23, C5:1(C2xC23:C4), (C2xC4):6(C2xF5), (C2xC20):10(C2xC4), (C2xC22:F5):1C2, C2.6(C2xC22:F5), (C22xD5):3(C2xC4), C10.1(C2xC22:C4), (C22xC10).51(C2xC4), (C2xC10).51(C22xC4), (C2xC10).47(C22:C4), SmallGroup(320,1082)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C2xD10.D4
C1C5C10D10C22xD5C22:F5C2xC22:F5 — C2xD10.D4
C5C10C2xC10 — C2xD10.D4
C1C22C23C22xC4

Generators and relations for C2xD10.D4
 G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=b-1c, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd-1=ebe-1=b3, dcd-1=b7c, ece-1=b2c, ede-1=b4cd-1 >

Subgroups: 1194 in 210 conjugacy classes, 52 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, D5, C10, C10, C10, C22:C4, C22xC4, C22xC4, C2xD4, C24, C20, F5, D10, D10, C2xC10, C2xC10, C23:C4, C2xC22:C4, C22xD4, D20, C2xC20, C2xC20, C2xF5, C22xD5, C22xD5, C22xD5, C22xC10, C2xC23:C4, C22:F5, C22:F5, C2xD20, C2xD20, C22xC20, C22xF5, C23xD5, D10.D4, C2xC22:F5, C22xD20, C2xD10.D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, F5, C23:C4, C2xC22:C4, C2xF5, C2xC23:C4, C22:F5, C22xF5, D10.D4, C2xC22:F5, C2xD10.D4

Smallest permutation representation of C2xD10.D4
On 80 points
Generators in S80
(1 47)(2 48)(3 49)(4 50)(5 41)(6 42)(7 43)(8 44)(9 45)(10 46)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 12)(13 20)(14 19)(15 18)(16 17)(21 27)(22 26)(23 25)(28 30)(31 37)(32 36)(33 35)(38 40)(41 42)(43 50)(44 49)(45 48)(46 47)(51 52)(53 60)(54 59)(55 58)(56 57)(61 67)(62 66)(63 65)(68 70)(71 77)(72 76)(73 75)(78 80)
(1 22 12 32)(2 29 11 35)(3 26 20 38)(4 23 19 31)(5 30 18 34)(6 27 17 37)(7 24 16 40)(8 21 15 33)(9 28 14 36)(10 25 13 39)(41 70 58 74)(42 67 57 77)(43 64 56 80)(44 61 55 73)(45 68 54 76)(46 65 53 79)(47 62 52 72)(48 69 51 75)(49 66 60 78)(50 63 59 71)
(2 8 10 4)(3 5 9 7)(11 20 13 14)(12 17)(15 18 19 16)(21 35 28 34)(22 32 27 37)(23 39 26 40)(24 36 25 33)(29 31 30 38)(41 45 43 49)(44 46 50 48)(51 60 53 54)(52 57)(55 58 59 56)(61 75 68 74)(62 72 67 77)(63 79 66 80)(64 76 65 73)(69 71 70 78)

G:=sub<Sym(80)| (1,47)(2,48)(3,49)(4,50)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,12)(13,20)(14,19)(15,18)(16,17)(21,27)(22,26)(23,25)(28,30)(31,37)(32,36)(33,35)(38,40)(41,42)(43,50)(44,49)(45,48)(46,47)(51,52)(53,60)(54,59)(55,58)(56,57)(61,67)(62,66)(63,65)(68,70)(71,77)(72,76)(73,75)(78,80), (1,22,12,32)(2,29,11,35)(3,26,20,38)(4,23,19,31)(5,30,18,34)(6,27,17,37)(7,24,16,40)(8,21,15,33)(9,28,14,36)(10,25,13,39)(41,70,58,74)(42,67,57,77)(43,64,56,80)(44,61,55,73)(45,68,54,76)(46,65,53,79)(47,62,52,72)(48,69,51,75)(49,66,60,78)(50,63,59,71), (2,8,10,4)(3,5,9,7)(11,20,13,14)(12,17)(15,18,19,16)(21,35,28,34)(22,32,27,37)(23,39,26,40)(24,36,25,33)(29,31,30,38)(41,45,43,49)(44,46,50,48)(51,60,53,54)(52,57)(55,58,59,56)(61,75,68,74)(62,72,67,77)(63,79,66,80)(64,76,65,73)(69,71,70,78)>;

G:=Group( (1,47)(2,48)(3,49)(4,50)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,12)(13,20)(14,19)(15,18)(16,17)(21,27)(22,26)(23,25)(28,30)(31,37)(32,36)(33,35)(38,40)(41,42)(43,50)(44,49)(45,48)(46,47)(51,52)(53,60)(54,59)(55,58)(56,57)(61,67)(62,66)(63,65)(68,70)(71,77)(72,76)(73,75)(78,80), (1,22,12,32)(2,29,11,35)(3,26,20,38)(4,23,19,31)(5,30,18,34)(6,27,17,37)(7,24,16,40)(8,21,15,33)(9,28,14,36)(10,25,13,39)(41,70,58,74)(42,67,57,77)(43,64,56,80)(44,61,55,73)(45,68,54,76)(46,65,53,79)(47,62,52,72)(48,69,51,75)(49,66,60,78)(50,63,59,71), (2,8,10,4)(3,5,9,7)(11,20,13,14)(12,17)(15,18,19,16)(21,35,28,34)(22,32,27,37)(23,39,26,40)(24,36,25,33)(29,31,30,38)(41,45,43,49)(44,46,50,48)(51,60,53,54)(52,57)(55,58,59,56)(61,75,68,74)(62,72,67,77)(63,79,66,80)(64,76,65,73)(69,71,70,78) );

G=PermutationGroup([[(1,47),(2,48),(3,49),(4,50),(5,41),(6,42),(7,43),(8,44),(9,45),(10,46),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12),(13,20),(14,19),(15,18),(16,17),(21,27),(22,26),(23,25),(28,30),(31,37),(32,36),(33,35),(38,40),(41,42),(43,50),(44,49),(45,48),(46,47),(51,52),(53,60),(54,59),(55,58),(56,57),(61,67),(62,66),(63,65),(68,70),(71,77),(72,76),(73,75),(78,80)], [(1,22,12,32),(2,29,11,35),(3,26,20,38),(4,23,19,31),(5,30,18,34),(6,27,17,37),(7,24,16,40),(8,21,15,33),(9,28,14,36),(10,25,13,39),(41,70,58,74),(42,67,57,77),(43,64,56,80),(44,61,55,73),(45,68,54,76),(46,65,53,79),(47,62,52,72),(48,69,51,75),(49,66,60,78),(50,63,59,71)], [(2,8,10,4),(3,5,9,7),(11,20,13,14),(12,17),(15,18,19,16),(21,35,28,34),(22,32,27,37),(23,39,26,40),(24,36,25,33),(29,31,30,38),(41,45,43,49),(44,46,50,48),(51,60,53,54),(52,57),(55,58,59,56),(61,75,68,74),(62,72,67,77),(63,79,66,80),(64,76,65,73),(69,71,70,78)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C···4J 5 10A···10G20A···20H
order122222222222444···4510···1020···20
size1111221010101020204420···2044···44···4

38 irreducible representations

dim11111112444444
type+++++++++++
imageC1C2C2C2C4C4C4D4F5C23:C4C2xF5C2xF5C22:F5D10.D4
kernelC2xD10.D4D10.D4C2xC22:F5C22xD20C2xD20C22xC20C23xD5C22xD5C22xC4C10C2xC4C23C22C2
# reps14214224122148

Matrix representation of C2xD10.D4 in GL8(F41)

400000000
040000000
004000000
000400000
000040000
000004000
000000400
000000040
,
00100000
00010000
404040400000
10000000
000000400
000000040
00001111
000040000
,
00100000
01000000
10000000
404040400000
000000400
000004000
000040000
00001111
,
10000000
00010000
01000000
404040400000
000037334034
00007184
000073406
0000373384
,
10000000
00010000
01000000
404040400000
00001000
00000001
00000100
000040404040

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[0,0,40,1,0,0,0,0,0,0,40,0,0,0,0,0,1,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,0,0,0,0,1,40,0,0,0,0,0,0,1,0,0,0,0,0,40,0,1,0,0,0,0,0,0,40,1,0],[0,0,1,40,0,0,0,0,0,1,0,40,0,0,0,0,1,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,40,0,1,0,0,0,0,40,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0,40,0,0,0,0,0,0,0,0,37,7,7,37,0,0,0,0,33,1,3,3,0,0,0,0,40,8,40,38,0,0,0,0,34,4,6,4],[1,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0,40,0,0,0,0,0,0,0,0,1,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0,40] >;

C2xD10.D4 in GAP, Magma, Sage, TeX

C_2\times D_{10}.D_4
% in TeX

G:=Group("C2xD10.D4");
// GroupNames label

G:=SmallGroup(320,1082);
// by ID

G=gap.SmallGroup(320,1082);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,184,297,1684,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=b^-1*c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d^-1=e*b*e^-1=b^3,d*c*d^-1=b^7*c,e*c*e^-1=b^2*c,e*d*e^-1=b^4*c*d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<