Extensions 1→N→G→Q→1 with N=C6 and Q=He3:C2

Direct product G=NxQ with N=C6 and Q=He3:C2
dρLabelID
C6xHe3:C254C6xHe3:C2324,145

Semidirect products G=N:Q with N=C6 and Q=He3:C2
extensionφ:Q→Aut NdρLabelID
C6:(He3:C2) = C2xHe3:5S3φ: He3:C2/He3C2 ⊆ Aut C6366C6:(He3:C2)324,150

Non-split extensions G=N.Q with N=C6 and Q=He3:C2
extensionφ:Q→Aut NdρLabelID
C6.1(He3:C2) = C32:2Dic9φ: He3:C2/He3C2 ⊆ Aut C6366C6.1(He3:C2)324,20
C6.2(He3:C2) = C33:Dic3φ: He3:C2/He3C2 ⊆ Aut C6366-C6.2(He3:C2)324,22
C6.3(He3:C2) = He3.3Dic3φ: He3:C2/He3C2 ⊆ Aut C61086-C6.3(He3:C2)324,23
C6.4(He3:C2) = He3:Dic3φ: He3:C2/He3C2 ⊆ Aut C61086-C6.4(He3:C2)324,24
C6.5(He3:C2) = 3- 1+2.Dic3φ: He3:C2/He3C2 ⊆ Aut C61086-C6.5(He3:C2)324,25
C6.6(He3:C2) = C2xC32:2D9φ: He3:C2/He3C2 ⊆ Aut C6366C6.6(He3:C2)324,75
C6.7(He3:C2) = C2xC33:S3φ: He3:C2/He3C2 ⊆ Aut C6186+C6.7(He3:C2)324,77
C6.8(He3:C2) = C2xHe3.3S3φ: He3:C2/He3C2 ⊆ Aut C6546+C6.8(He3:C2)324,78
C6.9(He3:C2) = C2xHe3:S3φ: He3:C2/He3C2 ⊆ Aut C6546+C6.9(He3:C2)324,79
C6.10(He3:C2) = C2x3- 1+2.S3φ: He3:C2/He3C2 ⊆ Aut C6546+C6.10(He3:C2)324,80
C6.11(He3:C2) = He3:6Dic3φ: He3:C2/He3C2 ⊆ Aut C6366C6.11(He3:C2)324,104
C6.12(He3:C2) = C3xHe3:3C4central extension (φ=1)108C6.12(He3:C2)324,99

׿
x
:
Z
F
o
wr
Q
<