direct product, non-abelian, supersoluble, monomial
Aliases: C2×3- 1+2.S3, 3- 1+2.D6, (C3×C9).2D6, (C3×C18).10S3, C3.He3⋊C22, C6.10(He3⋊C2), (C2×3- 1+2).4S3, (C3×C6).8(C3⋊S3), (C2×C3.He3)⋊C2, C32.4(C2×C3⋊S3), C3.5(C2×He3⋊C2), SmallGroup(324,80)
Series: Derived ►Chief ►Lower central ►Upper central
C3.He3 — C2×3- 1+2.S3 |
Generators and relations for C2×3- 1+2.S3
G = < a,b,c,d,e | a2=b9=c3=e2=1, d3=b6, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b4, dbd-1=b7c, ebe=b5c-1, dcd-1=b3c, ce=ec, ede=b3d2 >
Subgroups: 337 in 65 conjugacy classes, 19 normal (11 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, D6, C2×C6, D9, C18, C3×S3, C3×C6, C3×C9, 3- 1+2, D18, S3×C6, C3×D9, C9⋊C6, C3×C18, C2×3- 1+2, C3.He3, C6×D9, C2×C9⋊C6, 3- 1+2.S3, C2×C3.He3, C2×3- 1+2.S3
Quotients: C1, C2, C22, S3, D6, C3⋊S3, C2×C3⋊S3, He3⋊C2, C2×He3⋊C2, 3- 1+2.S3, C2×3- 1+2.S3
Character table of C2×3- 1+2.S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 9A | 9B | 9C | 9D | 9E | 9F | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 1 | 27 | 27 | 2 | 3 | 3 | 2 | 3 | 3 | 27 | 27 | 27 | 27 | 6 | 6 | 6 | 18 | 18 | 18 | 6 | 6 | 6 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 1 | 1 | 1 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | 1 | -2 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 3 | -3 | -1 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3 | 3-3√-3/2 | 3+3√-3/2 | ζ65 | ζ32 | ζ3 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ14 | 3 | -3 | -1 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3 | 3+3√-3/2 | 3-3√-3/2 | ζ6 | ζ3 | ζ32 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ15 | 3 | 3 | 1 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | ζ3 | ζ32 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ16 | 3 | -3 | 1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3 | 3-3√-3/2 | 3+3√-3/2 | ζ3 | ζ6 | ζ65 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ17 | 3 | 3 | -1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 3 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 3 | -1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | -3 | 1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3 | 3+3√-3/2 | 3-3√-3/2 | ζ32 | ζ65 | ζ6 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ20 | 3 | 3 | 1 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 3 | -3-3√-3/2 | -3+3√-3/2 | ζ32 | ζ3 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ21 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ23 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ24 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ25 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | orthogonal faithful |
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 43)(20 44)(21 45)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 46)(35 47)(36 48)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)(28 34 31)(29 32 35)(37 43 40)(38 41 44)(46 52 49)(47 50 53)
(1 38 31 7 44 28 4 41 34)(2 45 32 8 42 29 5 39 35)(3 37 30 9 43 36 6 40 33)(10 25 54 16 22 51 13 19 48)(11 20 49 17 26 46 14 23 52)(12 27 50 18 24 47 15 21 53)
(2 3)(4 7)(5 9)(6 8)(10 12)(11 17)(13 18)(15 16)(19 50)(20 49)(21 54)(22 47)(23 46)(24 51)(25 53)(26 52)(27 48)(28 44)(29 43)(30 39)(31 41)(32 40)(33 45)(34 38)(35 37)(36 42)
G:=sub<Sym(54)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,52,49)(47,50,53), (1,38,31,7,44,28,4,41,34)(2,45,32,8,42,29,5,39,35)(3,37,30,9,43,36,6,40,33)(10,25,54,16,22,51,13,19,48)(11,20,49,17,26,46,14,23,52)(12,27,50,18,24,47,15,21,53), (2,3)(4,7)(5,9)(6,8)(10,12)(11,17)(13,18)(15,16)(19,50)(20,49)(21,54)(22,47)(23,46)(24,51)(25,53)(26,52)(27,48)(28,44)(29,43)(30,39)(31,41)(32,40)(33,45)(34,38)(35,37)(36,42)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,52,49)(47,50,53), (1,38,31,7,44,28,4,41,34)(2,45,32,8,42,29,5,39,35)(3,37,30,9,43,36,6,40,33)(10,25,54,16,22,51,13,19,48)(11,20,49,17,26,46,14,23,52)(12,27,50,18,24,47,15,21,53), (2,3)(4,7)(5,9)(6,8)(10,12)(11,17)(13,18)(15,16)(19,50)(20,49)(21,54)(22,47)(23,46)(24,51)(25,53)(26,52)(27,48)(28,44)(29,43)(30,39)(31,41)(32,40)(33,45)(34,38)(35,37)(36,42) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,43),(20,44),(21,45),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,46),(35,47),(36,48)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26),(28,34,31),(29,32,35),(37,43,40),(38,41,44),(46,52,49),(47,50,53)], [(1,38,31,7,44,28,4,41,34),(2,45,32,8,42,29,5,39,35),(3,37,30,9,43,36,6,40,33),(10,25,54,16,22,51,13,19,48),(11,20,49,17,26,46,14,23,52),(12,27,50,18,24,47,15,21,53)], [(2,3),(4,7),(5,9),(6,8),(10,12),(11,17),(13,18),(15,16),(19,50),(20,49),(21,54),(22,47),(23,46),(24,51),(25,53),(26,52),(27,48),(28,44),(29,43),(30,39),(31,41),(32,40),(33,45),(34,38),(35,37),(36,42)]])
Matrix representation of C2×3- 1+2.S3 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 7 | 17 | 0 | 0 |
14 | 14 | 14 | 14 | 7 | 16 |
12 | 12 | 12 | 12 | 10 | 7 |
0 | 7 | 0 | 7 | 7 | 5 |
5 | 0 | 0 | 7 | 7 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 1 | 18 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
18 | 18 | 18 | 0 | 18 | 18 |
18 | 18 | 18 | 18 | 18 | 17 |
0 | 0 | 0 | 0 | 1 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 18 |
18 | 18 | 18 | 18 | 18 | 17 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,0,14,12,0,5,0,0,14,12,7,0,5,7,14,12,0,0,12,17,14,12,7,7,0,0,7,10,7,7,0,0,16,7,5,5],[1,0,0,0,0,18,0,1,0,0,0,18,0,0,0,1,0,18,0,0,18,18,1,0,0,0,0,0,0,18,0,0,0,0,1,18],[18,0,1,0,0,0,18,0,0,1,0,0,18,0,0,0,0,1,18,0,0,0,0,0,18,1,0,0,0,0,17,18,0,0,1,1],[0,1,0,18,0,0,1,0,0,18,0,0,0,0,0,18,1,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,18,17,1,1] >;
C2×3- 1+2.S3 in GAP, Magma, Sage, TeX
C_2\times 3_-^{1+2}.S_3
% in TeX
G:=Group("C2xES-(3,1).S3");
// GroupNames label
G:=SmallGroup(324,80);
// by ID
G=gap.SmallGroup(324,80);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,2090,986,3171,303,453,7564,1096,7781]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^9=c^3=e^2=1,d^3=b^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^4,d*b*d^-1=b^7*c,e*b*e=b^5*c^-1,d*c*d^-1=b^3*c,c*e=e*c,e*d*e=b^3*d^2>;
// generators/relations
Export