Copied to
clipboard

G = C2×3- 1+2.S3order 324 = 22·34

Direct product of C2 and 3- 1+2.S3

direct product, non-abelian, supersoluble, monomial

Aliases: C2×3- 1+2.S3, 3- 1+2.D6, (C3×C9).2D6, (C3×C18).10S3, C3.He3⋊C22, C6.10(He3⋊C2), (C2×3- 1+2).4S3, (C3×C6).8(C3⋊S3), (C2×C3.He3)⋊C2, C32.4(C2×C3⋊S3), C3.5(C2×He3⋊C2), SmallGroup(324,80)

Series: Derived Chief Lower central Upper central

C1C32C3.He3 — C2×3- 1+2.S3
C1C3C32C3×C9C3.He33- 1+2.S3 — C2×3- 1+2.S3
C3.He3 — C2×3- 1+2.S3
C1C2

Generators and relations for C2×3- 1+2.S3
 G = < a,b,c,d,e | a2=b9=c3=e2=1, d3=b6, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b4, dbd-1=b7c, ebe=b5c-1, dcd-1=b3c, ce=ec, ede=b3d2 >

Subgroups: 337 in 65 conjugacy classes, 19 normal (11 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, D6, C2×C6, D9, C18, C3×S3, C3×C6, C3×C9, 3- 1+2, D18, S3×C6, C3×D9, C9⋊C6, C3×C18, C2×3- 1+2, C3.He3, C6×D9, C2×C9⋊C6, 3- 1+2.S3, C2×C3.He3, C2×3- 1+2.S3
Quotients: C1, C2, C22, S3, D6, C3⋊S3, C2×C3⋊S3, He3⋊C2, C2×He3⋊C2, 3- 1+2.S3, C2×3- 1+2.S3

Character table of C2×3- 1+2.S3

 class 12A2B2C3A3B3C6A6B6C6D6E6F6G9A9B9C9D9E9F18A18B18C18D18E18F
 size 11272723323327272727666181818666181818
ρ111111111111111111111111111    trivial
ρ21-11-1111-1-1-11-1-11111111-1-1-1-1-1-1    linear of order 2
ρ31-1-11111-1-1-1-111-1111111-1-1-1-1-1-1    linear of order 2
ρ411-1-1111111-1-1-1-1111111111111    linear of order 2
ρ522002222220000-1-1-1-1-12-1-1-1-1-12    orthogonal lifted from S3
ρ62-200222-2-2-20000-1-1-1-12-11111-21    orthogonal lifted from D6
ρ72-200222-2-2-20000-1-1-12-1-1111-211    orthogonal lifted from D6
ρ822002222220000222-1-1-1222-1-1-1    orthogonal lifted from S3
ρ92-200222-2-2-20000-1-1-1-1-1211111-2    orthogonal lifted from D6
ρ1022002222220000-1-1-1-12-1-1-1-1-12-1    orthogonal lifted from S3
ρ1122002222220000-1-1-12-1-1-1-1-12-1-1    orthogonal lifted from S3
ρ122-200222-2-2-20000222-1-1-1-2-2-2111    orthogonal lifted from D6
ρ133-3-113-3-3-3/2-3+3-3/2-33-3-3/23+3-3/2ζ65ζ32ζ3ζ6000000000000    complex lifted from C2×He3⋊C2
ρ143-3-113-3+3-3/2-3-3-3/2-33+3-3/23-3-3/2ζ6ζ3ζ32ζ65000000000000    complex lifted from C2×He3⋊C2
ρ1533113-3-3-3/2-3+3-3/23-3+3-3/2-3-3-3/2ζ3ζ32ζ3ζ32000000000000    complex lifted from He3⋊C2
ρ163-31-13-3-3-3/2-3+3-3/2-33-3-3/23+3-3/2ζ3ζ6ζ65ζ32000000000000    complex lifted from C2×He3⋊C2
ρ1733-1-13-3-3-3/2-3+3-3/23-3+3-3/2-3-3-3/2ζ65ζ6ζ65ζ6000000000000    complex lifted from He3⋊C2
ρ1833-1-13-3+3-3/2-3-3-3/23-3-3-3/2-3+3-3/2ζ6ζ65ζ6ζ65000000000000    complex lifted from He3⋊C2
ρ193-31-13-3+3-3/2-3-3-3/2-33+3-3/23-3-3/2ζ32ζ65ζ6ζ3000000000000    complex lifted from C2×He3⋊C2
ρ2033113-3+3-3/2-3-3-3/23-3-3-3/2-3+3-3/2ζ32ζ3ζ32ζ3000000000000    complex lifted from He3⋊C2
ρ216-600-3003000000989492998+2ζ979492ζ95+2ζ94929000ζ989794+2ζ929594929ζ989492+2ζ9000    orthogonal faithful
ρ226600-300-300000098+2ζ979492ζ95+2ζ949299894929000989492998+2ζ979492ζ95+2ζ94929000    orthogonal lifted from 3- 1+2.S3
ρ236600-300-3000000989492998+2ζ979492ζ95+2ζ94929000ζ95+2ζ94929989492998+2ζ979492000    orthogonal lifted from 3- 1+2.S3
ρ246600-300-3000000ζ95+2ζ94929989492998+2ζ97949200098+2ζ979492ζ95+2ζ949299894929000    orthogonal lifted from 3- 1+2.S3
ρ256-600-300300000098+2ζ979492ζ95+2ζ9492998949290009594929ζ989492+2ζ9ζ989794+2ζ92000    orthogonal faithful
ρ266-600-3003000000ζ95+2ζ94929989492998+2ζ979492000ζ989492+2ζ9ζ989794+2ζ929594929000    orthogonal faithful

Smallest permutation representation of C2×3- 1+2.S3
On 54 points
Generators in S54
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 43)(20 44)(21 45)(22 37)(23 38)(24 39)(25 40)(26 41)(27 42)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 46)(35 47)(36 48)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)(28 34 31)(29 32 35)(37 43 40)(38 41 44)(46 52 49)(47 50 53)
(1 38 31 7 44 28 4 41 34)(2 45 32 8 42 29 5 39 35)(3 37 30 9 43 36 6 40 33)(10 25 54 16 22 51 13 19 48)(11 20 49 17 26 46 14 23 52)(12 27 50 18 24 47 15 21 53)
(2 3)(4 7)(5 9)(6 8)(10 12)(11 17)(13 18)(15 16)(19 50)(20 49)(21 54)(22 47)(23 46)(24 51)(25 53)(26 52)(27 48)(28 44)(29 43)(30 39)(31 41)(32 40)(33 45)(34 38)(35 37)(36 42)

G:=sub<Sym(54)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,52,49)(47,50,53), (1,38,31,7,44,28,4,41,34)(2,45,32,8,42,29,5,39,35)(3,37,30,9,43,36,6,40,33)(10,25,54,16,22,51,13,19,48)(11,20,49,17,26,46,14,23,52)(12,27,50,18,24,47,15,21,53), (2,3)(4,7)(5,9)(6,8)(10,12)(11,17)(13,18)(15,16)(19,50)(20,49)(21,54)(22,47)(23,46)(24,51)(25,53)(26,52)(27,48)(28,44)(29,43)(30,39)(31,41)(32,40)(33,45)(34,38)(35,37)(36,42)>;

G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,43)(20,44)(21,45)(22,37)(23,38)(24,39)(25,40)(26,41)(27,42)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,46)(35,47)(36,48), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(28,34,31)(29,32,35)(37,43,40)(38,41,44)(46,52,49)(47,50,53), (1,38,31,7,44,28,4,41,34)(2,45,32,8,42,29,5,39,35)(3,37,30,9,43,36,6,40,33)(10,25,54,16,22,51,13,19,48)(11,20,49,17,26,46,14,23,52)(12,27,50,18,24,47,15,21,53), (2,3)(4,7)(5,9)(6,8)(10,12)(11,17)(13,18)(15,16)(19,50)(20,49)(21,54)(22,47)(23,46)(24,51)(25,53)(26,52)(27,48)(28,44)(29,43)(30,39)(31,41)(32,40)(33,45)(34,38)(35,37)(36,42) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,43),(20,44),(21,45),(22,37),(23,38),(24,39),(25,40),(26,41),(27,42),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,46),(35,47),(36,48)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26),(28,34,31),(29,32,35),(37,43,40),(38,41,44),(46,52,49),(47,50,53)], [(1,38,31,7,44,28,4,41,34),(2,45,32,8,42,29,5,39,35),(3,37,30,9,43,36,6,40,33),(10,25,54,16,22,51,13,19,48),(11,20,49,17,26,46,14,23,52),(12,27,50,18,24,47,15,21,53)], [(2,3),(4,7),(5,9),(6,8),(10,12),(11,17),(13,18),(15,16),(19,50),(20,49),(21,54),(22,47),(23,46),(24,51),(25,53),(26,52),(27,48),(28,44),(29,43),(30,39),(31,41),(32,40),(33,45),(34,38),(35,37),(36,42)]])

Matrix representation of C2×3- 1+2.S3 in GL6(𝔽19)

1800000
0180000
0018000
0001800
0000180
0000018
,
0051200
0071700
14141414716
12121212107
070775
500775
,
100000
010000
0001800
0011800
000101
18181801818
,
181818181817
0000118
100000
010000
000001
001001
,
010000
100000
0000118
181818181817
001001
000001

G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,0,14,12,0,5,0,0,14,12,7,0,5,7,14,12,0,0,12,17,14,12,7,7,0,0,7,10,7,7,0,0,16,7,5,5],[1,0,0,0,0,18,0,1,0,0,0,18,0,0,0,1,0,18,0,0,18,18,1,0,0,0,0,0,0,18,0,0,0,0,1,18],[18,0,1,0,0,0,18,0,0,1,0,0,18,0,0,0,0,1,18,0,0,0,0,0,18,1,0,0,0,0,17,18,0,0,1,1],[0,1,0,18,0,0,1,0,0,18,0,0,0,0,0,18,1,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,18,17,1,1] >;

C2×3- 1+2.S3 in GAP, Magma, Sage, TeX

C_2\times 3_-^{1+2}.S_3
% in TeX

G:=Group("C2xES-(3,1).S3");
// GroupNames label

G:=SmallGroup(324,80);
// by ID

G=gap.SmallGroup(324,80);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,2090,986,3171,303,453,7564,1096,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^9=c^3=e^2=1,d^3=b^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^4,d*b*d^-1=b^7*c,e*b*e=b^5*c^-1,d*c*d^-1=b^3*c,c*e=e*c,e*d*e=b^3*d^2>;
// generators/relations

Export

Character table of C2×3- 1+2.S3 in TeX

׿
×
𝔽