Copied to
clipboard

G = C2×He3⋊S3order 324 = 22·34

Direct product of C2 and He3⋊S3

direct product, non-abelian, supersoluble, monomial

Aliases: C2×He3⋊S3, He34D6, (C3×C18)⋊6S3, (C3×C9)⋊10D6, (C2×He3)⋊3S3, C6.9(He3⋊C2), He3⋊C34C22, (C3×C6).7(C3⋊S3), C32.3(C2×C3⋊S3), C3.4(C2×He3⋊C2), (C2×He3⋊C3)⋊3C2, SmallGroup(324,79)

Series: Derived Chief Lower central Upper central

C1C32He3⋊C3 — C2×He3⋊S3
C1C3C32He3He3⋊C3He3⋊S3 — C2×He3⋊S3
He3⋊C3 — C2×He3⋊S3
C1C2

Generators and relations for C2×He3⋊S3
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, dbd-1=bc-1, bf=fb, cd=dc, ce=ec, fcf=c-1, ede-1=b-1c-1d, fdf=bc-1d-1, fef=e-1 >

Subgroups: 634 in 80 conjugacy classes, 19 normal (11 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, D6, C2×C6, D9, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C9, He3, D18, S3×C6, C2×C3⋊S3, C3×D9, C32⋊C6, C3×C18, C2×He3, He3⋊C3, C6×D9, C2×C32⋊C6, He3⋊S3, C2×He3⋊C3, C2×He3⋊S3
Quotients: C1, C2, C22, S3, D6, C3⋊S3, C2×C3⋊S3, He3⋊C2, C2×He3⋊C2, He3⋊S3, C2×He3⋊S3

Character table of C2×He3⋊S3

 class 12A2B2C3A3B3C3D3E3F6A6B6C6D6E6F6G6H6I6J9A9B9C18A18B18C
 size 11272723318181823318181827272727666666
ρ111111111111111111111111111    trivial
ρ21-1-11111111-1-1-1-1-1-1-111-1111-1-1-1    linear of order 2
ρ311-1-1111111111111-1-1-1-1111111    linear of order 2
ρ41-11-1111111-1-1-1-1-1-11-1-11111-1-1-1    linear of order 2
ρ52200222-12-12222-1-10000-1-1-1-1-1-1    orthogonal lifted from S3
ρ62-200222-12-1-2-2-2-2110000-1-1-1111    orthogonal lifted from D6
ρ72-200222-1-1-1-2-2-21110000222-2-2-2    orthogonal lifted from D6
ρ82200222-1-12222-12-10000-1-1-1-1-1-1    orthogonal lifted from S3
ρ922002222-1-1222-1-120000-1-1-1-1-1-1    orthogonal lifted from S3
ρ102-2002222-1-1-2-2-211-20000-1-1-1111    orthogonal lifted from D6
ρ112200222-1-1-1222-1-1-10000222222    orthogonal lifted from S3
ρ122-200222-1-12-2-2-21-210000-1-1-1111    orthogonal lifted from D6
ρ1333-1-13-3-3-3/2-3+3-3/20003-3-3-3/2-3+3-3/2000ζ6ζ65ζ6ζ65000000    complex lifted from He3⋊C2
ρ1433-1-13-3+3-3/2-3-3-3/20003-3+3-3/2-3-3-3/2000ζ65ζ6ζ65ζ6000000    complex lifted from He3⋊C2
ρ153-3-113-3+3-3/2-3-3-3/2000-33-3-3/23+3-3/2000ζ65ζ32ζ3ζ6000000    complex lifted from C2×He3⋊C2
ρ163-3-113-3-3-3/2-3+3-3/2000-33+3-3/23-3-3/2000ζ6ζ3ζ32ζ65000000    complex lifted from C2×He3⋊C2
ρ173-31-13-3-3-3/2-3+3-3/2000-33+3-3/23-3-3/2000ζ32ζ65ζ6ζ3000000    complex lifted from C2×He3⋊C2
ρ1833113-3+3-3/2-3-3-3/20003-3+3-3/2-3-3-3/2000ζ3ζ32ζ3ζ32000000    complex lifted from He3⋊C2
ρ193-31-13-3+3-3/2-3-3-3/2000-33-3-3/23+3-3/2000ζ3ζ6ζ65ζ32000000    complex lifted from C2×He3⋊C2
ρ2033113-3-3-3/2-3+3-3/20003-3-3-3/2-3+3-3/2000ζ32ζ3ζ32ζ3000000    complex lifted from He3⋊C2
ρ216600-300000-300000000098+2ζ979492ζ95+2ζ9492998949299894929ζ95+2ζ9492998+2ζ979492    orthogonal lifted from He3⋊S3
ρ226600-300000-3000000000989492998+2ζ979492ζ95+2ζ94929ζ95+2ζ9492998+2ζ9794929894929    orthogonal lifted from He3⋊S3
ρ236-600-3000003000000000989492998+2ζ979492ζ95+2ζ94929ζ989794+2ζ92ζ989492+2ζ99594929    orthogonal faithful
ρ246-600-300000300000000098+2ζ979492ζ95+2ζ9492998949299594929ζ989794+2ζ92ζ989492+2ζ9    orthogonal faithful
ρ256600-300000-3000000000ζ95+2ζ94929989492998+2ζ97949298+2ζ9794929894929ζ95+2ζ94929    orthogonal lifted from He3⋊S3
ρ266-600-3000003000000000ζ95+2ζ94929989492998+2ζ979492ζ989492+2ζ99594929ζ989794+2ζ92    orthogonal faithful

Smallest permutation representation of C2×He3⋊S3
On 54 points
Generators in S54
(1 18)(2 10)(3 11)(4 15)(5 8)(6 13)(7 17)(9 12)(14 16)(19 46)(20 47)(21 48)(22 28)(23 29)(24 30)(25 49)(26 50)(27 51)(31 41)(32 42)(33 40)(34 54)(35 52)(36 53)(37 44)(38 45)(39 43)
(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 7 8)(2 3 12)(4 6 16)(5 18 17)(9 10 11)(13 14 15)(19 20 21)(22 24 23)(25 27 26)(28 30 29)(31 32 33)(34 36 35)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 51 50)(52 54 53)
(1 54 42)(2 27 37)(3 26 38)(4 24 48)(5 35 31)(6 23 46)(7 53 40)(8 52 41)(9 49 43)(10 51 44)(11 50 45)(12 25 39)(13 29 19)(14 28 20)(15 30 21)(16 22 47)(17 36 33)(18 34 32)
(1 19 25)(2 42 28)(3 40 30)(4 44 36)(5 48 50)(6 45 35)(7 20 27)(8 21 26)(9 31 23)(10 32 22)(11 33 24)(12 41 29)(13 38 52)(14 39 54)(15 37 53)(16 43 34)(17 47 51)(18 46 49)
(1 6)(2 11)(3 10)(4 7)(5 14)(8 16)(9 12)(13 18)(15 17)(19 35)(20 36)(21 34)(22 40)(23 41)(24 42)(25 45)(26 43)(27 44)(28 33)(29 31)(30 32)(37 51)(38 49)(39 50)(46 52)(47 53)(48 54)

G:=sub<Sym(54)| (1,18)(2,10)(3,11)(4,15)(5,8)(6,13)(7,17)(9,12)(14,16)(19,46)(20,47)(21,48)(22,28)(23,29)(24,30)(25,49)(26,50)(27,51)(31,41)(32,42)(33,40)(34,54)(35,52)(36,53)(37,44)(38,45)(39,43), (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,7,8)(2,3,12)(4,6,16)(5,18,17)(9,10,11)(13,14,15)(19,20,21)(22,24,23)(25,27,26)(28,30,29)(31,32,33)(34,36,35)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,51,50)(52,54,53), (1,54,42)(2,27,37)(3,26,38)(4,24,48)(5,35,31)(6,23,46)(7,53,40)(8,52,41)(9,49,43)(10,51,44)(11,50,45)(12,25,39)(13,29,19)(14,28,20)(15,30,21)(16,22,47)(17,36,33)(18,34,32), (1,19,25)(2,42,28)(3,40,30)(4,44,36)(5,48,50)(6,45,35)(7,20,27)(8,21,26)(9,31,23)(10,32,22)(11,33,24)(12,41,29)(13,38,52)(14,39,54)(15,37,53)(16,43,34)(17,47,51)(18,46,49), (1,6)(2,11)(3,10)(4,7)(5,14)(8,16)(9,12)(13,18)(15,17)(19,35)(20,36)(21,34)(22,40)(23,41)(24,42)(25,45)(26,43)(27,44)(28,33)(29,31)(30,32)(37,51)(38,49)(39,50)(46,52)(47,53)(48,54)>;

G:=Group( (1,18)(2,10)(3,11)(4,15)(5,8)(6,13)(7,17)(9,12)(14,16)(19,46)(20,47)(21,48)(22,28)(23,29)(24,30)(25,49)(26,50)(27,51)(31,41)(32,42)(33,40)(34,54)(35,52)(36,53)(37,44)(38,45)(39,43), (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,7,8)(2,3,12)(4,6,16)(5,18,17)(9,10,11)(13,14,15)(19,20,21)(22,24,23)(25,27,26)(28,30,29)(31,32,33)(34,36,35)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,51,50)(52,54,53), (1,54,42)(2,27,37)(3,26,38)(4,24,48)(5,35,31)(6,23,46)(7,53,40)(8,52,41)(9,49,43)(10,51,44)(11,50,45)(12,25,39)(13,29,19)(14,28,20)(15,30,21)(16,22,47)(17,36,33)(18,34,32), (1,19,25)(2,42,28)(3,40,30)(4,44,36)(5,48,50)(6,45,35)(7,20,27)(8,21,26)(9,31,23)(10,32,22)(11,33,24)(12,41,29)(13,38,52)(14,39,54)(15,37,53)(16,43,34)(17,47,51)(18,46,49), (1,6)(2,11)(3,10)(4,7)(5,14)(8,16)(9,12)(13,18)(15,17)(19,35)(20,36)(21,34)(22,40)(23,41)(24,42)(25,45)(26,43)(27,44)(28,33)(29,31)(30,32)(37,51)(38,49)(39,50)(46,52)(47,53)(48,54) );

G=PermutationGroup([[(1,18),(2,10),(3,11),(4,15),(5,8),(6,13),(7,17),(9,12),(14,16),(19,46),(20,47),(21,48),(22,28),(23,29),(24,30),(25,49),(26,50),(27,51),(31,41),(32,42),(33,40),(34,54),(35,52),(36,53),(37,44),(38,45),(39,43)], [(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,7,8),(2,3,12),(4,6,16),(5,18,17),(9,10,11),(13,14,15),(19,20,21),(22,24,23),(25,27,26),(28,30,29),(31,32,33),(34,36,35),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,51,50),(52,54,53)], [(1,54,42),(2,27,37),(3,26,38),(4,24,48),(5,35,31),(6,23,46),(7,53,40),(8,52,41),(9,49,43),(10,51,44),(11,50,45),(12,25,39),(13,29,19),(14,28,20),(15,30,21),(16,22,47),(17,36,33),(18,34,32)], [(1,19,25),(2,42,28),(3,40,30),(4,44,36),(5,48,50),(6,45,35),(7,20,27),(8,21,26),(9,31,23),(10,32,22),(11,33,24),(12,41,29),(13,38,52),(14,39,54),(15,37,53),(16,43,34),(17,47,51),(18,46,49)], [(1,6),(2,11),(3,10),(4,7),(5,14),(8,16),(9,12),(13,18),(15,17),(19,35),(20,36),(21,34),(22,40),(23,41),(24,42),(25,45),(26,43),(27,44),(28,33),(29,31),(30,32),(37,51),(38,49),(39,50),(46,52),(47,53),(48,54)]])

Matrix representation of C2×He3⋊S3 in GL9(𝔽19)

1800000000
0180000000
0018000000
000100000
000010000
000001000
000000100
000000010
000000001
,
1100000000
0110000000
0011000000
000100000
000010000
0000001800
0000011800
0000000181
0000000180
,
100000000
010000000
001000000
0000180000
0001180000
0000001800
0000011800
0000000018
0000000118
,
001000000
1100000000
070000000
00000141700
0000021200
0000000177
0000000125
0001770000
0001250000
,
100000000
0110000000
007000000
000000010
000000001
000100000
000010000
000001000
000000100
,
1800000000
0018000000
0180000000
000010000
000100000
000000001
000000010
000000100
000001000

G:=sub<GL(9,GF(19))| [18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18],[0,11,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,12,0,0,0,0,0,0,0,7,5,0,0,0,14,2,0,0,0,0,0,0,0,17,12,0,0,0,0,0,0,0,0,0,17,12,0,0,0,0,0,0,0,7,5,0,0],[1,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0],[18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0] >;

C2×He3⋊S3 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes S_3
% in TeX

G:=Group("C2xHe3:S3");
// GroupNames label

G:=SmallGroup(324,79);
// by ID

G=gap.SmallGroup(324,79);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,146,579,303,1096,652,7781]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,d*b*d^-1=b*c^-1,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f=c^-1,e*d*e^-1=b^-1*c^-1*d,f*d*f=b*c^-1*d^-1,f*e*f=e^-1>;
// generators/relations

Export

Character table of C2×He3⋊S3 in TeX

׿
×
𝔽