direct product, non-abelian, supersoluble, monomial
Aliases: C2×He3⋊S3, He3⋊4D6, (C3×C18)⋊6S3, (C3×C9)⋊10D6, (C2×He3)⋊3S3, C6.9(He3⋊C2), He3⋊C3⋊4C22, (C3×C6).7(C3⋊S3), C32.3(C2×C3⋊S3), C3.4(C2×He3⋊C2), (C2×He3⋊C3)⋊3C2, SmallGroup(324,79)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — He3⋊C3 — C2×He3⋊S3 |
C1 — C3 — C32 — He3 — He3⋊C3 — He3⋊S3 — C2×He3⋊S3 |
He3⋊C3 — C2×He3⋊S3 |
Generators and relations for C2×He3⋊S3
G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, dbd-1=bc-1, bf=fb, cd=dc, ce=ec, fcf=c-1, ede-1=b-1c-1d, fdf=bc-1d-1, fef=e-1 >
Subgroups: 634 in 80 conjugacy classes, 19 normal (11 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, D6, C2×C6, D9, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C9, He3, D18, S3×C6, C2×C3⋊S3, C3×D9, C32⋊C6, C3×C18, C2×He3, He3⋊C3, C6×D9, C2×C32⋊C6, He3⋊S3, C2×He3⋊C3, C2×He3⋊S3
Quotients: C1, C2, C22, S3, D6, C3⋊S3, C2×C3⋊S3, He3⋊C2, C2×He3⋊C2, He3⋊S3, C2×He3⋊S3
Character table of C2×He3⋊S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 9A | 9B | 9C | 18A | 18B | 18C | |
size | 1 | 1 | 27 | 27 | 2 | 3 | 3 | 18 | 18 | 18 | 2 | 3 | 3 | 18 | 18 | 18 | 27 | 27 | 27 | 27 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | -1 | -2 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -2 | -2 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 2 | -2 | -2 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 3 | 3 | -1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ6 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ14 | 3 | 3 | -1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ65 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ15 | 3 | -3 | -1 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | ζ65 | ζ32 | ζ3 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ16 | 3 | -3 | -1 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | ζ6 | ζ3 | ζ32 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ17 | 3 | -3 | 1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | ζ32 | ζ65 | ζ6 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ18 | 3 | 3 | 1 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ3 | ζ32 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | -3 | 1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | ζ3 | ζ6 | ζ65 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ20 | 3 | 3 | 1 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ32 | ζ3 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ21 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | orthogonal lifted from He3⋊S3 |
ρ22 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | orthogonal lifted from He3⋊S3 |
ρ23 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | orthogonal faithful |
ρ24 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | orthogonal faithful |
ρ25 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | orthogonal lifted from He3⋊S3 |
ρ26 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | orthogonal faithful |
(1 18)(2 10)(3 11)(4 15)(5 8)(6 13)(7 17)(9 12)(14 16)(19 46)(20 47)(21 48)(22 28)(23 29)(24 30)(25 49)(26 50)(27 51)(31 41)(32 42)(33 40)(34 54)(35 52)(36 53)(37 44)(38 45)(39 43)
(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 7 8)(2 3 12)(4 6 16)(5 18 17)(9 10 11)(13 14 15)(19 20 21)(22 24 23)(25 27 26)(28 30 29)(31 32 33)(34 36 35)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 51 50)(52 54 53)
(1 54 42)(2 27 37)(3 26 38)(4 24 48)(5 35 31)(6 23 46)(7 53 40)(8 52 41)(9 49 43)(10 51 44)(11 50 45)(12 25 39)(13 29 19)(14 28 20)(15 30 21)(16 22 47)(17 36 33)(18 34 32)
(1 19 25)(2 42 28)(3 40 30)(4 44 36)(5 48 50)(6 45 35)(7 20 27)(8 21 26)(9 31 23)(10 32 22)(11 33 24)(12 41 29)(13 38 52)(14 39 54)(15 37 53)(16 43 34)(17 47 51)(18 46 49)
(1 6)(2 11)(3 10)(4 7)(5 14)(8 16)(9 12)(13 18)(15 17)(19 35)(20 36)(21 34)(22 40)(23 41)(24 42)(25 45)(26 43)(27 44)(28 33)(29 31)(30 32)(37 51)(38 49)(39 50)(46 52)(47 53)(48 54)
G:=sub<Sym(54)| (1,18)(2,10)(3,11)(4,15)(5,8)(6,13)(7,17)(9,12)(14,16)(19,46)(20,47)(21,48)(22,28)(23,29)(24,30)(25,49)(26,50)(27,51)(31,41)(32,42)(33,40)(34,54)(35,52)(36,53)(37,44)(38,45)(39,43), (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,7,8)(2,3,12)(4,6,16)(5,18,17)(9,10,11)(13,14,15)(19,20,21)(22,24,23)(25,27,26)(28,30,29)(31,32,33)(34,36,35)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,51,50)(52,54,53), (1,54,42)(2,27,37)(3,26,38)(4,24,48)(5,35,31)(6,23,46)(7,53,40)(8,52,41)(9,49,43)(10,51,44)(11,50,45)(12,25,39)(13,29,19)(14,28,20)(15,30,21)(16,22,47)(17,36,33)(18,34,32), (1,19,25)(2,42,28)(3,40,30)(4,44,36)(5,48,50)(6,45,35)(7,20,27)(8,21,26)(9,31,23)(10,32,22)(11,33,24)(12,41,29)(13,38,52)(14,39,54)(15,37,53)(16,43,34)(17,47,51)(18,46,49), (1,6)(2,11)(3,10)(4,7)(5,14)(8,16)(9,12)(13,18)(15,17)(19,35)(20,36)(21,34)(22,40)(23,41)(24,42)(25,45)(26,43)(27,44)(28,33)(29,31)(30,32)(37,51)(38,49)(39,50)(46,52)(47,53)(48,54)>;
G:=Group( (1,18)(2,10)(3,11)(4,15)(5,8)(6,13)(7,17)(9,12)(14,16)(19,46)(20,47)(21,48)(22,28)(23,29)(24,30)(25,49)(26,50)(27,51)(31,41)(32,42)(33,40)(34,54)(35,52)(36,53)(37,44)(38,45)(39,43), (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,7,8)(2,3,12)(4,6,16)(5,18,17)(9,10,11)(13,14,15)(19,20,21)(22,24,23)(25,27,26)(28,30,29)(31,32,33)(34,36,35)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,51,50)(52,54,53), (1,54,42)(2,27,37)(3,26,38)(4,24,48)(5,35,31)(6,23,46)(7,53,40)(8,52,41)(9,49,43)(10,51,44)(11,50,45)(12,25,39)(13,29,19)(14,28,20)(15,30,21)(16,22,47)(17,36,33)(18,34,32), (1,19,25)(2,42,28)(3,40,30)(4,44,36)(5,48,50)(6,45,35)(7,20,27)(8,21,26)(9,31,23)(10,32,22)(11,33,24)(12,41,29)(13,38,52)(14,39,54)(15,37,53)(16,43,34)(17,47,51)(18,46,49), (1,6)(2,11)(3,10)(4,7)(5,14)(8,16)(9,12)(13,18)(15,17)(19,35)(20,36)(21,34)(22,40)(23,41)(24,42)(25,45)(26,43)(27,44)(28,33)(29,31)(30,32)(37,51)(38,49)(39,50)(46,52)(47,53)(48,54) );
G=PermutationGroup([[(1,18),(2,10),(3,11),(4,15),(5,8),(6,13),(7,17),(9,12),(14,16),(19,46),(20,47),(21,48),(22,28),(23,29),(24,30),(25,49),(26,50),(27,51),(31,41),(32,42),(33,40),(34,54),(35,52),(36,53),(37,44),(38,45),(39,43)], [(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,7,8),(2,3,12),(4,6,16),(5,18,17),(9,10,11),(13,14,15),(19,20,21),(22,24,23),(25,27,26),(28,30,29),(31,32,33),(34,36,35),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,51,50),(52,54,53)], [(1,54,42),(2,27,37),(3,26,38),(4,24,48),(5,35,31),(6,23,46),(7,53,40),(8,52,41),(9,49,43),(10,51,44),(11,50,45),(12,25,39),(13,29,19),(14,28,20),(15,30,21),(16,22,47),(17,36,33),(18,34,32)], [(1,19,25),(2,42,28),(3,40,30),(4,44,36),(5,48,50),(6,45,35),(7,20,27),(8,21,26),(9,31,23),(10,32,22),(11,33,24),(12,41,29),(13,38,52),(14,39,54),(15,37,53),(16,43,34),(17,47,51),(18,46,49)], [(1,6),(2,11),(3,10),(4,7),(5,14),(8,16),(9,12),(13,18),(15,17),(19,35),(20,36),(21,34),(22,40),(23,41),(24,42),(25,45),(26,43),(27,44),(28,33),(29,31),(30,32),(37,51),(38,49),(39,50),(46,52),(47,53),(48,54)]])
Matrix representation of C2×He3⋊S3 ►in GL9(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 18 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 14 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 7 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 17 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 5 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(9,GF(19))| [18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18],[0,11,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,12,0,0,0,0,0,0,0,7,5,0,0,0,14,2,0,0,0,0,0,0,0,17,12,0,0,0,0,0,0,0,0,0,17,12,0,0,0,0,0,0,0,7,5,0,0],[1,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0],[18,0,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0] >;
C2×He3⋊S3 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3\rtimes S_3
% in TeX
G:=Group("C2xHe3:S3");
// GroupNames label
G:=SmallGroup(324,79);
// by ID
G=gap.SmallGroup(324,79);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,146,579,303,1096,652,7781]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,d*b*d^-1=b*c^-1,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f=c^-1,e*d*e^-1=b^-1*c^-1*d,f*d*f=b*c^-1*d^-1,f*e*f=e^-1>;
// generators/relations
Export