direct product, non-abelian, supersoluble, monomial
Aliases: C2×He3.3S3, He3.5D6, 3- 1+2⋊2D6, (C3×C9)⋊9D6, (C3×C18)⋊5S3, (C2×He3).9S3, He3.C3⋊2C22, C6.8(He3⋊C2), (C2×3- 1+2)⋊2S3, (C3×C6).6(C3⋊S3), C32.2(C2×C3⋊S3), (C2×He3.C3)⋊1C2, C3.3(C2×He3⋊C2), SmallGroup(324,78)
Series: Derived ►Chief ►Lower central ►Upper central
He3.C3 — C2×He3.3S3 |
Generators and relations for C2×He3.3S3
G = < a,b,c,d,e,f | a2=b3=c3=d3=f2=1, e3=fcf=c-1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=fbf=bc-1, be=eb, cd=dc, ce=ec, ede-1=b-1cd, fdf=d-1, fef=ce2 >
Subgroups: 436 in 70 conjugacy classes, 19 normal (13 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, D6, C2×C6, D9, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C9, He3, 3- 1+2, D18, S3×C6, C2×C3⋊S3, C3×D9, C32⋊C6, C9⋊C6, C3×C18, C2×He3, C2×3- 1+2, He3.C3, C6×D9, C2×C32⋊C6, C2×C9⋊C6, He3.3S3, C2×He3.C3, C2×He3.3S3
Quotients: C1, C2, C22, S3, D6, C3⋊S3, C2×C3⋊S3, He3⋊C2, C2×He3⋊C2, He3.3S3, C2×He3.3S3
Character table of C2×He3.3S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 9A | 9B | 9C | 9D | 9E | 18A | 18B | 18C | 18D | 18E | |
size | 1 | 1 | 27 | 27 | 2 | 3 | 3 | 18 | 2 | 3 | 3 | 18 | 27 | 27 | 27 | 27 | 6 | 6 | 6 | 18 | 18 | 6 | 6 | 6 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | -2 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | 1 | 1 | -2 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -2 | -2 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 3 | -3 | -1 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | -3 | 3+3√-3/2 | 3-3√-3/2 | 0 | ζ6 | ζ3 | ζ32 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ14 | 3 | 3 | 1 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | ζ3 | ζ32 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ15 | 3 | -3 | 1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | -3 | 3+3√-3/2 | 3-3√-3/2 | 0 | ζ32 | ζ65 | ζ6 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ16 | 3 | -3 | 1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | -3 | 3-3√-3/2 | 3+3√-3/2 | 0 | ζ3 | ζ6 | ζ65 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ17 | 3 | 3 | -1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | ζ6 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 3 | 1 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | ζ32 | ζ3 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | -3 | -1 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | -3 | 3-3√-3/2 | 3+3√-3/2 | 0 | ζ65 | ζ32 | ζ3 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C2×He3⋊C2 |
ρ20 | 3 | 3 | -1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | ζ65 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ21 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ23 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ26 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | orthogonal lifted from He3.3S3 |
(1 27)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 34)(11 35)(12 36)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(37 50)(38 51)(39 52)(40 53)(41 54)(42 46)(43 47)(44 48)(45 49)
(1 35 44)(2 36 45)(3 28 37)(4 29 38)(5 30 39)(6 31 40)(7 32 41)(8 33 42)(9 34 43)(10 47 26)(11 48 27)(12 49 19)(13 50 20)(14 51 21)(15 52 22)(16 53 23)(17 54 24)(18 46 25)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(2 45 30)(3 28 43)(5 39 33)(6 31 37)(8 42 36)(9 34 40)(10 53 26)(11 17 14)(12 25 46)(13 47 20)(15 19 49)(16 50 23)(18 22 52)(29 35 32)(38 41 44)(48 51 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 30)(11 29)(12 28)(13 36)(14 35)(15 34)(16 33)(17 32)(18 31)(37 52)(38 51)(39 50)(40 49)(41 48)(42 47)(43 46)(44 54)(45 53)
G:=sub<Sym(54)| (1,27)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(37,50)(38,51)(39,52)(40,53)(41,54)(42,46)(43,47)(44,48)(45,49), (1,35,44)(2,36,45)(3,28,37)(4,29,38)(5,30,39)(6,31,40)(7,32,41)(8,33,42)(9,34,43)(10,47,26)(11,48,27)(12,49,19)(13,50,20)(14,51,21)(15,52,22)(16,53,23)(17,54,24)(18,46,25), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,45,30)(3,28,43)(5,39,33)(6,31,37)(8,42,36)(9,34,40)(10,53,26)(11,17,14)(12,25,46)(13,47,20)(15,19,49)(16,50,23)(18,22,52)(29,35,32)(38,41,44)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,30)(11,29)(12,28)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46)(44,54)(45,53)>;
G:=Group( (1,27)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(37,50)(38,51)(39,52)(40,53)(41,54)(42,46)(43,47)(44,48)(45,49), (1,35,44)(2,36,45)(3,28,37)(4,29,38)(5,30,39)(6,31,40)(7,32,41)(8,33,42)(9,34,43)(10,47,26)(11,48,27)(12,49,19)(13,50,20)(14,51,21)(15,52,22)(16,53,23)(17,54,24)(18,46,25), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,45,30)(3,28,43)(5,39,33)(6,31,37)(8,42,36)(9,34,40)(10,53,26)(11,17,14)(12,25,46)(13,47,20)(15,19,49)(16,50,23)(18,22,52)(29,35,32)(38,41,44)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,30)(11,29)(12,28)(13,36)(14,35)(15,34)(16,33)(17,32)(18,31)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46)(44,54)(45,53) );
G=PermutationGroup([[(1,27),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,34),(11,35),(12,36),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(37,50),(38,51),(39,52),(40,53),(41,54),(42,46),(43,47),(44,48),(45,49)], [(1,35,44),(2,36,45),(3,28,37),(4,29,38),(5,30,39),(6,31,40),(7,32,41),(8,33,42),(9,34,43),(10,47,26),(11,48,27),(12,49,19),(13,50,20),(14,51,21),(15,52,22),(16,53,23),(17,54,24),(18,46,25)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(2,45,30),(3,28,43),(5,39,33),(6,31,37),(8,42,36),(9,34,40),(10,53,26),(11,17,14),(12,25,46),(13,47,20),(15,19,49),(16,50,23),(18,22,52),(29,35,32),(38,41,44),(48,51,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,30),(11,29),(12,28),(13,36),(14,35),(15,34),(16,33),(17,32),(18,31),(37,52),(38,51),(39,50),(40,49),(41,48),(42,47),(43,46),(44,54),(45,53)]])
Matrix representation of C2×He3.3S3 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
18 | 1 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 18 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 1 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 18 | 0 |
1 | 3 | 1 | 3 | 15 | 1 |
16 | 4 | 16 | 4 | 18 | 16 |
15 | 1 | 1 | 3 | 1 | 3 |
18 | 16 | 16 | 4 | 16 | 4 |
1 | 3 | 15 | 1 | 1 | 3 |
16 | 4 | 18 | 16 | 16 | 4 |
0 | 18 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 18 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[18,18,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,1,0,0,0,0,0,0,0,18,18,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,18,18,0,0,0,0,0,0,18,18,0,0,0,0,1,0],[1,16,15,18,1,16,3,4,1,16,3,4,1,16,1,16,15,18,3,4,3,4,1,16,15,18,1,16,1,16,1,16,3,4,3,4],[0,18,0,0,0,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,18] >;
C2×He3.3S3 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3._3S_3
% in TeX
G:=Group("C2xHe3.3S3");
// GroupNames label
G:=SmallGroup(324,78);
// by ID
G=gap.SmallGroup(324,78);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,146,5763,303,237,7564,1096,7781]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=f^2=1,e^3=f*c*f=c^-1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=f*b*f=b*c^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*c*d,f*d*f=d^-1,f*e*f=c*e^2>;
// generators/relations
Export