Extensions 1→N→G→Q→1 with N=C2xC12 and Q=C14

Direct product G=NxQ with N=C2xC12 and Q=C14
dρLabelID
C22xC84336C2^2xC84336,204

Semidirect products G=N:Q with N=C2xC12 and Q=C14
extensionφ:Q→Aut NdρLabelID
(C2xC12):1C14 = C7xD6:C4φ: C14/C7C2 ⊆ Aut C2xC12168(C2xC12):1C14336,84
(C2xC12):2C14 = C22:C4xC21φ: C14/C7C2 ⊆ Aut C2xC12168(C2xC12):2C14336,107
(C2xC12):3C14 = C14xD12φ: C14/C7C2 ⊆ Aut C2xC12168(C2xC12):3C14336,186
(C2xC12):4C14 = C7xC4oD12φ: C14/C7C2 ⊆ Aut C2xC121682(C2xC12):4C14336,187
(C2xC12):5C14 = S3xC2xC28φ: C14/C7C2 ⊆ Aut C2xC12168(C2xC12):5C14336,185
(C2xC12):6C14 = D4xC42φ: C14/C7C2 ⊆ Aut C2xC12168(C2xC12):6C14336,205
(C2xC12):7C14 = C4oD4xC21φ: C14/C7C2 ⊆ Aut C2xC121682(C2xC12):7C14336,207

Non-split extensions G=N.Q with N=C2xC12 and Q=C14
extensionφ:Q→Aut NdρLabelID
(C2xC12).1C14 = C7xDic3:C4φ: C14/C7C2 ⊆ Aut C2xC12336(C2xC12).1C14336,82
(C2xC12).2C14 = C4:C4xC21φ: C14/C7C2 ⊆ Aut C2xC12336(C2xC12).2C14336,108
(C2xC12).3C14 = C7xC4:Dic3φ: C14/C7C2 ⊆ Aut C2xC12336(C2xC12).3C14336,83
(C2xC12).4C14 = C14xDic6φ: C14/C7C2 ⊆ Aut C2xC12336(C2xC12).4C14336,184
(C2xC12).5C14 = C7xC4.Dic3φ: C14/C7C2 ⊆ Aut C2xC121682(C2xC12).5C14336,80
(C2xC12).6C14 = C14xC3:C8φ: C14/C7C2 ⊆ Aut C2xC12336(C2xC12).6C14336,79
(C2xC12).7C14 = Dic3xC28φ: C14/C7C2 ⊆ Aut C2xC12336(C2xC12).7C14336,81
(C2xC12).8C14 = M4(2)xC21φ: C14/C7C2 ⊆ Aut C2xC121682(C2xC12).8C14336,110
(C2xC12).9C14 = Q8xC42φ: C14/C7C2 ⊆ Aut C2xC12336(C2xC12).9C14336,206

׿
x
:
Z
F
o
wr
Q
<