Copied to
clipboard

G = D4×C42order 336 = 24·3·7

Direct product of C42 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C42, C233C42, C8414C22, C42.58C23, C4⋊(C2×C42), C289(C2×C6), (C2×C4)⋊2C42, (C2×C84)⋊14C2, (C2×C28)⋊14C6, (C2×C12)⋊6C14, C124(C2×C14), C222(C2×C42), (C22×C42)⋊1C2, (C2×C42)⋊8C22, (C22×C6)⋊3C14, (C22×C14)⋊9C6, C2.1(C22×C42), C6.11(C22×C14), C14.25(C22×C6), (C2×C6)⋊2(C2×C14), (C2×C14)⋊11(C2×C6), SmallGroup(336,205)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C42
C1C2C14C42C2×C42D4×C21 — D4×C42
C1C2 — D4×C42
C1C2×C42 — D4×C42

Generators and relations for D4×C42
 G = < a,b,c | a42=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 140 in 108 conjugacy classes, 76 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C7, C2×C4, D4, C23, C12, C2×C6, C2×C6, C2×C6, C14, C14, C14, C2×D4, C21, C2×C12, C3×D4, C22×C6, C28, C2×C14, C2×C14, C2×C14, C42, C42, C42, C6×D4, C2×C28, C7×D4, C22×C14, C84, C2×C42, C2×C42, C2×C42, D4×C14, C2×C84, D4×C21, C22×C42, D4×C42
Quotients: C1, C2, C3, C22, C6, C7, D4, C23, C2×C6, C14, C2×D4, C21, C3×D4, C22×C6, C2×C14, C42, C6×D4, C7×D4, C22×C14, C2×C42, D4×C14, D4×C21, C22×C42, D4×C42

Smallest permutation representation of D4×C42
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 84 102 154)(2 43 103 155)(3 44 104 156)(4 45 105 157)(5 46 106 158)(6 47 107 159)(7 48 108 160)(8 49 109 161)(9 50 110 162)(10 51 111 163)(11 52 112 164)(12 53 113 165)(13 54 114 166)(14 55 115 167)(15 56 116 168)(16 57 117 127)(17 58 118 128)(18 59 119 129)(19 60 120 130)(20 61 121 131)(21 62 122 132)(22 63 123 133)(23 64 124 134)(24 65 125 135)(25 66 126 136)(26 67 85 137)(27 68 86 138)(28 69 87 139)(29 70 88 140)(30 71 89 141)(31 72 90 142)(32 73 91 143)(33 74 92 144)(34 75 93 145)(35 76 94 146)(36 77 95 147)(37 78 96 148)(38 79 97 149)(39 80 98 150)(40 81 99 151)(41 82 100 152)(42 83 101 153)
(1 154)(2 155)(3 156)(4 157)(5 158)(6 159)(7 160)(8 161)(9 162)(10 163)(11 164)(12 165)(13 166)(14 167)(15 168)(16 127)(17 128)(18 129)(19 130)(20 131)(21 132)(22 133)(23 134)(24 135)(25 136)(26 137)(27 138)(28 139)(29 140)(30 141)(31 142)(32 143)(33 144)(34 145)(35 146)(36 147)(37 148)(38 149)(39 150)(40 151)(41 152)(42 153)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 125)(66 126)(67 85)(68 86)(69 87)(70 88)(71 89)(72 90)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,84,102,154)(2,43,103,155)(3,44,104,156)(4,45,105,157)(5,46,106,158)(6,47,107,159)(7,48,108,160)(8,49,109,161)(9,50,110,162)(10,51,111,163)(11,52,112,164)(12,53,113,165)(13,54,114,166)(14,55,115,167)(15,56,116,168)(16,57,117,127)(17,58,118,128)(18,59,119,129)(19,60,120,130)(20,61,121,131)(21,62,122,132)(22,63,123,133)(23,64,124,134)(24,65,125,135)(25,66,126,136)(26,67,85,137)(27,68,86,138)(28,69,87,139)(29,70,88,140)(30,71,89,141)(31,72,90,142)(32,73,91,143)(33,74,92,144)(34,75,93,145)(35,76,94,146)(36,77,95,147)(37,78,96,148)(38,79,97,149)(39,80,98,150)(40,81,99,151)(41,82,100,152)(42,83,101,153), (1,154)(2,155)(3,156)(4,157)(5,158)(6,159)(7,160)(8,161)(9,162)(10,163)(11,164)(12,165)(13,166)(14,167)(15,168)(16,127)(17,128)(18,129)(19,130)(20,131)(21,132)(22,133)(23,134)(24,135)(25,136)(26,137)(27,138)(28,139)(29,140)(30,141)(31,142)(32,143)(33,144)(34,145)(35,146)(36,147)(37,148)(38,149)(39,150)(40,151)(41,152)(42,153)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,84,102,154)(2,43,103,155)(3,44,104,156)(4,45,105,157)(5,46,106,158)(6,47,107,159)(7,48,108,160)(8,49,109,161)(9,50,110,162)(10,51,111,163)(11,52,112,164)(12,53,113,165)(13,54,114,166)(14,55,115,167)(15,56,116,168)(16,57,117,127)(17,58,118,128)(18,59,119,129)(19,60,120,130)(20,61,121,131)(21,62,122,132)(22,63,123,133)(23,64,124,134)(24,65,125,135)(25,66,126,136)(26,67,85,137)(27,68,86,138)(28,69,87,139)(29,70,88,140)(30,71,89,141)(31,72,90,142)(32,73,91,143)(33,74,92,144)(34,75,93,145)(35,76,94,146)(36,77,95,147)(37,78,96,148)(38,79,97,149)(39,80,98,150)(40,81,99,151)(41,82,100,152)(42,83,101,153), (1,154)(2,155)(3,156)(4,157)(5,158)(6,159)(7,160)(8,161)(9,162)(10,163)(11,164)(12,165)(13,166)(14,167)(15,168)(16,127)(17,128)(18,129)(19,130)(20,131)(21,132)(22,133)(23,134)(24,135)(25,136)(26,137)(27,138)(28,139)(29,140)(30,141)(31,142)(32,143)(33,144)(34,145)(35,146)(36,147)(37,148)(38,149)(39,150)(40,151)(41,152)(42,153)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,84,102,154),(2,43,103,155),(3,44,104,156),(4,45,105,157),(5,46,106,158),(6,47,107,159),(7,48,108,160),(8,49,109,161),(9,50,110,162),(10,51,111,163),(11,52,112,164),(12,53,113,165),(13,54,114,166),(14,55,115,167),(15,56,116,168),(16,57,117,127),(17,58,118,128),(18,59,119,129),(19,60,120,130),(20,61,121,131),(21,62,122,132),(22,63,123,133),(23,64,124,134),(24,65,125,135),(25,66,126,136),(26,67,85,137),(27,68,86,138),(28,69,87,139),(29,70,88,140),(30,71,89,141),(31,72,90,142),(32,73,91,143),(33,74,92,144),(34,75,93,145),(35,76,94,146),(36,77,95,147),(37,78,96,148),(38,79,97,149),(39,80,98,150),(40,81,99,151),(41,82,100,152),(42,83,101,153)], [(1,154),(2,155),(3,156),(4,157),(5,158),(6,159),(7,160),(8,161),(9,162),(10,163),(11,164),(12,165),(13,166),(14,167),(15,168),(16,127),(17,128),(18,129),(19,130),(20,131),(21,132),(22,133),(23,134),(24,135),(25,136),(26,137),(27,138),(28,139),(29,140),(30,141),(31,142),(32,143),(33,144),(34,145),(35,146),(36,147),(37,148),(38,149),(39,150),(40,151),(41,152),(42,153),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,125),(66,126),(67,85),(68,86),(69,87),(70,88),(71,89),(72,90),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102)]])

210 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B6A···6F6G···6N7A···7F12A12B12C12D14A···14R14S···14AP21A···21L28A···28L42A···42AJ42AK···42CF84A···84X
order1222222233446···66···67···71212121214···1414···1421···2128···2842···4242···4284···84
size1111222211221···12···21···122221···12···21···12···21···12···22···2

210 irreducible representations

dim11111111111111112222
type+++++
imageC1C2C2C2C3C6C6C6C7C14C14C14C21C42C42C42D4C3×D4C7×D4D4×C21
kernelD4×C42C2×C84D4×C21C22×C42D4×C14C2×C28C7×D4C22×C14C6×D4C2×C12C3×D4C22×C6C2×D4C2×C4D4C23C42C14C6C2
# reps1142228466241212124824241224

Matrix representation of D4×C42 in GL3(𝔽337) generated by

33600
03330
00333
,
33600
0336335
011
,
100
0336335
001
G:=sub<GL(3,GF(337))| [336,0,0,0,333,0,0,0,333],[336,0,0,0,336,1,0,335,1],[1,0,0,0,336,0,0,335,1] >;

D4×C42 in GAP, Magma, Sage, TeX

D_4\times C_{42}
% in TeX

G:=Group("D4xC42");
// GroupNames label

G:=SmallGroup(336,205);
// by ID

G=gap.SmallGroup(336,205);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-7,-2,2041]);
// Polycyclic

G:=Group<a,b,c|a^42=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽