Copied to
clipboard

G = C4○D4×C21order 336 = 24·3·7

Direct product of C21 and C4○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C4○D4×C21, D42C42, Q83C42, C84.81C22, C42.60C23, (C2×C4)⋊3C42, (C2×C84)⋊15C2, (C2×C28)⋊15C6, (C2×C12)⋊7C14, (C3×D4)⋊5C14, (C7×D4)⋊11C6, C4.5(C2×C42), (C3×Q8)⋊5C14, (C7×Q8)⋊15C6, C22.(C2×C42), (D4×C21)⋊11C2, C28.44(C2×C6), (Q8×C21)⋊11C2, C12.21(C2×C14), C2.3(C22×C42), C6.13(C22×C14), C14.27(C22×C6), (C2×C42).21C22, (C2×C6).2(C2×C14), (C2×C14).19(C2×C6), SmallGroup(336,207)

Series: Derived Chief Lower central Upper central

C1C2 — C4○D4×C21
C1C2C14C42C2×C42D4×C21 — C4○D4×C21
C1C2 — C4○D4×C21
C1C84 — C4○D4×C21

Generators and relations for C4○D4×C21
 G = < a,b,c,d | a21=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >

Subgroups: 92 in 80 conjugacy classes, 68 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C7, C2×C4, D4, Q8, C12, C12, C2×C6, C14, C14, C4○D4, C21, C2×C12, C3×D4, C3×Q8, C28, C28, C2×C14, C42, C42, C3×C4○D4, C2×C28, C7×D4, C7×Q8, C84, C84, C2×C42, C7×C4○D4, C2×C84, D4×C21, Q8×C21, C4○D4×C21
Quotients: C1, C2, C3, C22, C6, C7, C23, C2×C6, C14, C4○D4, C21, C22×C6, C2×C14, C42, C3×C4○D4, C22×C14, C2×C42, C7×C4○D4, C22×C42, C4○D4×C21

Smallest permutation representation of C4○D4×C21
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 142 114 73)(2 143 115 74)(3 144 116 75)(4 145 117 76)(5 146 118 77)(6 147 119 78)(7 127 120 79)(8 128 121 80)(9 129 122 81)(10 130 123 82)(11 131 124 83)(12 132 125 84)(13 133 126 64)(14 134 106 65)(15 135 107 66)(16 136 108 67)(17 137 109 68)(18 138 110 69)(19 139 111 70)(20 140 112 71)(21 141 113 72)(22 58 96 152)(23 59 97 153)(24 60 98 154)(25 61 99 155)(26 62 100 156)(27 63 101 157)(28 43 102 158)(29 44 103 159)(30 45 104 160)(31 46 105 161)(32 47 85 162)(33 48 86 163)(34 49 87 164)(35 50 88 165)(36 51 89 166)(37 52 90 167)(38 53 91 168)(39 54 92 148)(40 55 93 149)(41 56 94 150)(42 57 95 151)
(1 73 114 142)(2 74 115 143)(3 75 116 144)(4 76 117 145)(5 77 118 146)(6 78 119 147)(7 79 120 127)(8 80 121 128)(9 81 122 129)(10 82 123 130)(11 83 124 131)(12 84 125 132)(13 64 126 133)(14 65 106 134)(15 66 107 135)(16 67 108 136)(17 68 109 137)(18 69 110 138)(19 70 111 139)(20 71 112 140)(21 72 113 141)(22 58 96 152)(23 59 97 153)(24 60 98 154)(25 61 99 155)(26 62 100 156)(27 63 101 157)(28 43 102 158)(29 44 103 159)(30 45 104 160)(31 46 105 161)(32 47 85 162)(33 48 86 163)(34 49 87 164)(35 50 88 165)(36 51 89 166)(37 52 90 167)(38 53 91 168)(39 54 92 148)(40 55 93 149)(41 56 94 150)(42 57 95 151)
(1 164)(2 165)(3 166)(4 167)(5 168)(6 148)(7 149)(8 150)(9 151)(10 152)(11 153)(12 154)(13 155)(14 156)(15 157)(16 158)(17 159)(18 160)(19 161)(20 162)(21 163)(22 130)(23 131)(24 132)(25 133)(26 134)(27 135)(28 136)(29 137)(30 138)(31 139)(32 140)(33 141)(34 142)(35 143)(36 144)(37 145)(38 146)(39 147)(40 127)(41 128)(42 129)(43 108)(44 109)(45 110)(46 111)(47 112)(48 113)(49 114)(50 115)(51 116)(52 117)(53 118)(54 119)(55 120)(56 121)(57 122)(58 123)(59 124)(60 125)(61 126)(62 106)(63 107)(64 99)(65 100)(66 101)(67 102)(68 103)(69 104)(70 105)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)(81 95)(82 96)(83 97)(84 98)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,142,114,73)(2,143,115,74)(3,144,116,75)(4,145,117,76)(5,146,118,77)(6,147,119,78)(7,127,120,79)(8,128,121,80)(9,129,122,81)(10,130,123,82)(11,131,124,83)(12,132,125,84)(13,133,126,64)(14,134,106,65)(15,135,107,66)(16,136,108,67)(17,137,109,68)(18,138,110,69)(19,139,111,70)(20,140,112,71)(21,141,113,72)(22,58,96,152)(23,59,97,153)(24,60,98,154)(25,61,99,155)(26,62,100,156)(27,63,101,157)(28,43,102,158)(29,44,103,159)(30,45,104,160)(31,46,105,161)(32,47,85,162)(33,48,86,163)(34,49,87,164)(35,50,88,165)(36,51,89,166)(37,52,90,167)(38,53,91,168)(39,54,92,148)(40,55,93,149)(41,56,94,150)(42,57,95,151), (1,73,114,142)(2,74,115,143)(3,75,116,144)(4,76,117,145)(5,77,118,146)(6,78,119,147)(7,79,120,127)(8,80,121,128)(9,81,122,129)(10,82,123,130)(11,83,124,131)(12,84,125,132)(13,64,126,133)(14,65,106,134)(15,66,107,135)(16,67,108,136)(17,68,109,137)(18,69,110,138)(19,70,111,139)(20,71,112,140)(21,72,113,141)(22,58,96,152)(23,59,97,153)(24,60,98,154)(25,61,99,155)(26,62,100,156)(27,63,101,157)(28,43,102,158)(29,44,103,159)(30,45,104,160)(31,46,105,161)(32,47,85,162)(33,48,86,163)(34,49,87,164)(35,50,88,165)(36,51,89,166)(37,52,90,167)(38,53,91,168)(39,54,92,148)(40,55,93,149)(41,56,94,150)(42,57,95,151), (1,164)(2,165)(3,166)(4,167)(5,168)(6,148)(7,149)(8,150)(9,151)(10,152)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,161)(20,162)(21,163)(22,130)(23,131)(24,132)(25,133)(26,134)(27,135)(28,136)(29,137)(30,138)(31,139)(32,140)(33,141)(34,142)(35,143)(36,144)(37,145)(38,146)(39,147)(40,127)(41,128)(42,129)(43,108)(44,109)(45,110)(46,111)(47,112)(48,113)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,121)(57,122)(58,123)(59,124)(60,125)(61,126)(62,106)(63,107)(64,99)(65,100)(66,101)(67,102)(68,103)(69,104)(70,105)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,142,114,73)(2,143,115,74)(3,144,116,75)(4,145,117,76)(5,146,118,77)(6,147,119,78)(7,127,120,79)(8,128,121,80)(9,129,122,81)(10,130,123,82)(11,131,124,83)(12,132,125,84)(13,133,126,64)(14,134,106,65)(15,135,107,66)(16,136,108,67)(17,137,109,68)(18,138,110,69)(19,139,111,70)(20,140,112,71)(21,141,113,72)(22,58,96,152)(23,59,97,153)(24,60,98,154)(25,61,99,155)(26,62,100,156)(27,63,101,157)(28,43,102,158)(29,44,103,159)(30,45,104,160)(31,46,105,161)(32,47,85,162)(33,48,86,163)(34,49,87,164)(35,50,88,165)(36,51,89,166)(37,52,90,167)(38,53,91,168)(39,54,92,148)(40,55,93,149)(41,56,94,150)(42,57,95,151), (1,73,114,142)(2,74,115,143)(3,75,116,144)(4,76,117,145)(5,77,118,146)(6,78,119,147)(7,79,120,127)(8,80,121,128)(9,81,122,129)(10,82,123,130)(11,83,124,131)(12,84,125,132)(13,64,126,133)(14,65,106,134)(15,66,107,135)(16,67,108,136)(17,68,109,137)(18,69,110,138)(19,70,111,139)(20,71,112,140)(21,72,113,141)(22,58,96,152)(23,59,97,153)(24,60,98,154)(25,61,99,155)(26,62,100,156)(27,63,101,157)(28,43,102,158)(29,44,103,159)(30,45,104,160)(31,46,105,161)(32,47,85,162)(33,48,86,163)(34,49,87,164)(35,50,88,165)(36,51,89,166)(37,52,90,167)(38,53,91,168)(39,54,92,148)(40,55,93,149)(41,56,94,150)(42,57,95,151), (1,164)(2,165)(3,166)(4,167)(5,168)(6,148)(7,149)(8,150)(9,151)(10,152)(11,153)(12,154)(13,155)(14,156)(15,157)(16,158)(17,159)(18,160)(19,161)(20,162)(21,163)(22,130)(23,131)(24,132)(25,133)(26,134)(27,135)(28,136)(29,137)(30,138)(31,139)(32,140)(33,141)(34,142)(35,143)(36,144)(37,145)(38,146)(39,147)(40,127)(41,128)(42,129)(43,108)(44,109)(45,110)(46,111)(47,112)(48,113)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,121)(57,122)(58,123)(59,124)(60,125)(61,126)(62,106)(63,107)(64,99)(65,100)(66,101)(67,102)(68,103)(69,104)(70,105)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(81,95)(82,96)(83,97)(84,98) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,142,114,73),(2,143,115,74),(3,144,116,75),(4,145,117,76),(5,146,118,77),(6,147,119,78),(7,127,120,79),(8,128,121,80),(9,129,122,81),(10,130,123,82),(11,131,124,83),(12,132,125,84),(13,133,126,64),(14,134,106,65),(15,135,107,66),(16,136,108,67),(17,137,109,68),(18,138,110,69),(19,139,111,70),(20,140,112,71),(21,141,113,72),(22,58,96,152),(23,59,97,153),(24,60,98,154),(25,61,99,155),(26,62,100,156),(27,63,101,157),(28,43,102,158),(29,44,103,159),(30,45,104,160),(31,46,105,161),(32,47,85,162),(33,48,86,163),(34,49,87,164),(35,50,88,165),(36,51,89,166),(37,52,90,167),(38,53,91,168),(39,54,92,148),(40,55,93,149),(41,56,94,150),(42,57,95,151)], [(1,73,114,142),(2,74,115,143),(3,75,116,144),(4,76,117,145),(5,77,118,146),(6,78,119,147),(7,79,120,127),(8,80,121,128),(9,81,122,129),(10,82,123,130),(11,83,124,131),(12,84,125,132),(13,64,126,133),(14,65,106,134),(15,66,107,135),(16,67,108,136),(17,68,109,137),(18,69,110,138),(19,70,111,139),(20,71,112,140),(21,72,113,141),(22,58,96,152),(23,59,97,153),(24,60,98,154),(25,61,99,155),(26,62,100,156),(27,63,101,157),(28,43,102,158),(29,44,103,159),(30,45,104,160),(31,46,105,161),(32,47,85,162),(33,48,86,163),(34,49,87,164),(35,50,88,165),(36,51,89,166),(37,52,90,167),(38,53,91,168),(39,54,92,148),(40,55,93,149),(41,56,94,150),(42,57,95,151)], [(1,164),(2,165),(3,166),(4,167),(5,168),(6,148),(7,149),(8,150),(9,151),(10,152),(11,153),(12,154),(13,155),(14,156),(15,157),(16,158),(17,159),(18,160),(19,161),(20,162),(21,163),(22,130),(23,131),(24,132),(25,133),(26,134),(27,135),(28,136),(29,137),(30,138),(31,139),(32,140),(33,141),(34,142),(35,143),(36,144),(37,145),(38,146),(39,147),(40,127),(41,128),(42,129),(43,108),(44,109),(45,110),(46,111),(47,112),(48,113),(49,114),(50,115),(51,116),(52,117),(53,118),(54,119),(55,120),(56,121),(57,122),(58,123),(59,124),(60,125),(61,126),(62,106),(63,107),(64,99),(65,100),(66,101),(67,102),(68,103),(69,104),(70,105),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94),(81,95),(82,96),(83,97),(84,98)]])

210 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E6A6B6C···6H7A···7F12A12B12C12D12E···12J14A···14F14G···14X21A···21L28A···28L28M···28AD42A···42L42M···42AV84A···84X84Y···84BH
order122223344444666···67···71212121212···1214···1414···1421···2128···2828···2842···4242···4284···8484···84
size112221111222112···21···111112···21···12···21···11···12···21···12···21···12···2

210 irreducible representations

dim11111111111111112222
type++++
imageC1C2C2C2C3C6C6C6C7C14C14C14C21C42C42C42C4○D4C3×C4○D4C7×C4○D4C4○D4×C21
kernelC4○D4×C21C2×C84D4×C21Q8×C21C7×C4○D4C2×C28C7×D4C7×Q8C3×C4○D4C2×C12C3×D4C3×Q8C4○D4C2×C4D4Q8C21C7C3C1
# reps1331266261818612363612241224

Matrix representation of C4○D4×C21 in GL3(𝔽337) generated by

12800
0640
0064
,
100
01890
00189
,
33600
01480
0148189
,
33600
0189296
0189148
G:=sub<GL(3,GF(337))| [128,0,0,0,64,0,0,0,64],[1,0,0,0,189,0,0,0,189],[336,0,0,0,148,148,0,0,189],[336,0,0,0,189,189,0,296,148] >;

C4○D4×C21 in GAP, Magma, Sage, TeX

C_4\circ D_4\times C_{21}
% in TeX

G:=Group("C4oD4xC21");
// GroupNames label

G:=SmallGroup(336,207);
// by ID

G=gap.SmallGroup(336,207);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-7,-2,2041,770]);
// Polycyclic

G:=Group<a,b,c,d|a^21=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
×
𝔽