Extensions 1→N→G→Q→1 with N=S3×Dic7 and Q=C2

Direct product G=N×Q with N=S3×Dic7 and Q=C2
dρLabelID
C2×S3×Dic7168C2xS3xDic7336,154

Semidirect products G=N:Q with N=S3×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic7)⋊1C2 = D12⋊D7φ: C2/C1C2 ⊆ Out S3×Dic71684(S3xDic7):1C2336,141
(S3×Dic7)⋊2C2 = D125D7φ: C2/C1C2 ⊆ Out S3×Dic71684-(S3xDic7):2C2336,145
(S3×Dic7)⋊3C2 = C42.C23φ: C2/C1C2 ⊆ Out S3×Dic71684-(S3xDic7):3C2336,153
(S3×Dic7)⋊4C2 = Dic3.D14φ: C2/C1C2 ⊆ Out S3×Dic71684(S3xDic7):4C2336,155
(S3×Dic7)⋊5C2 = S3×C7⋊D4φ: C2/C1C2 ⊆ Out S3×Dic7844(S3xDic7):5C2336,162
(S3×Dic7)⋊6C2 = C4×S3×D7φ: trivial image844(S3xDic7):6C2336,147

Non-split extensions G=N.Q with N=S3×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic7).C2 = S3×Dic14φ: C2/C1C2 ⊆ Out S3×Dic71684-(S3xDic7).C2336,140

׿
×
𝔽