direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×Dic14, D6.8D14, C28.27D6, Dic42⋊7C2, C12.15D14, C42.4C23, Dic7.1D6, C84.13C22, Dic3.7D14, Dic21.3C22, (S3×C7)⋊Q8, C7⋊2(S3×Q8), C21⋊Q8⋊2C2, C21⋊2(C2×Q8), C4.6(S3×D7), (C4×S3).1D7, C3⋊1(C2×Dic14), (S3×Dic7).C2, (S3×C28).1C2, C6.4(C22×D7), (C3×Dic14)⋊2C2, C14.4(C22×S3), (S3×C14).6C22, (C3×Dic7).1C22, (C7×Dic3).8C22, C2.8(C2×S3×D7), SmallGroup(336,140)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×Dic14
G = < a,b,c,d | a3=b2=c28=1, d2=c14, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 356 in 76 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C7, C2×C4, Q8, Dic3, Dic3, C12, C12, D6, C14, C14, C2×Q8, C21, Dic6, C4×S3, C4×S3, C3×Q8, Dic7, Dic7, C28, C28, C2×C14, S3×C7, C42, S3×Q8, Dic14, Dic14, C2×Dic7, C2×C28, C7×Dic3, C3×Dic7, Dic21, C84, S3×C14, C2×Dic14, S3×Dic7, C21⋊Q8, C3×Dic14, S3×C28, Dic42, S3×Dic14
Quotients: C1, C2, C22, S3, Q8, C23, D6, D7, C2×Q8, C22×S3, D14, S3×Q8, Dic14, C22×D7, S3×D7, C2×Dic14, C2×S3×D7, S3×Dic14
(1 161 39)(2 162 40)(3 163 41)(4 164 42)(5 165 43)(6 166 44)(7 167 45)(8 168 46)(9 141 47)(10 142 48)(11 143 49)(12 144 50)(13 145 51)(14 146 52)(15 147 53)(16 148 54)(17 149 55)(18 150 56)(19 151 29)(20 152 30)(21 153 31)(22 154 32)(23 155 33)(24 156 34)(25 157 35)(26 158 36)(27 159 37)(28 160 38)(57 124 110)(58 125 111)(59 126 112)(60 127 85)(61 128 86)(62 129 87)(63 130 88)(64 131 89)(65 132 90)(66 133 91)(67 134 92)(68 135 93)(69 136 94)(70 137 95)(71 138 96)(72 139 97)(73 140 98)(74 113 99)(75 114 100)(76 115 101)(77 116 102)(78 117 103)(79 118 104)(80 119 105)(81 120 106)(82 121 107)(83 122 108)(84 123 109)
(29 151)(30 152)(31 153)(32 154)(33 155)(34 156)(35 157)(36 158)(37 159)(38 160)(39 161)(40 162)(41 163)(42 164)(43 165)(44 166)(45 167)(46 168)(47 141)(48 142)(49 143)(50 144)(51 145)(52 146)(53 147)(54 148)(55 149)(56 150)(57 110)(58 111)(59 112)(60 85)(61 86)(62 87)(63 88)(64 89)(65 90)(66 91)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 101)(77 102)(78 103)(79 104)(80 105)(81 106)(82 107)(83 108)(84 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 138 15 124)(2 137 16 123)(3 136 17 122)(4 135 18 121)(5 134 19 120)(6 133 20 119)(7 132 21 118)(8 131 22 117)(9 130 23 116)(10 129 24 115)(11 128 25 114)(12 127 26 113)(13 126 27 140)(14 125 28 139)(29 81 43 67)(30 80 44 66)(31 79 45 65)(32 78 46 64)(33 77 47 63)(34 76 48 62)(35 75 49 61)(36 74 50 60)(37 73 51 59)(38 72 52 58)(39 71 53 57)(40 70 54 84)(41 69 55 83)(42 68 56 82)(85 158 99 144)(86 157 100 143)(87 156 101 142)(88 155 102 141)(89 154 103 168)(90 153 104 167)(91 152 105 166)(92 151 106 165)(93 150 107 164)(94 149 108 163)(95 148 109 162)(96 147 110 161)(97 146 111 160)(98 145 112 159)
G:=sub<Sym(168)| (1,161,39)(2,162,40)(3,163,41)(4,164,42)(5,165,43)(6,166,44)(7,167,45)(8,168,46)(9,141,47)(10,142,48)(11,143,49)(12,144,50)(13,145,51)(14,146,52)(15,147,53)(16,148,54)(17,149,55)(18,150,56)(19,151,29)(20,152,30)(21,153,31)(22,154,32)(23,155,33)(24,156,34)(25,157,35)(26,158,36)(27,159,37)(28,160,38)(57,124,110)(58,125,111)(59,126,112)(60,127,85)(61,128,86)(62,129,87)(63,130,88)(64,131,89)(65,132,90)(66,133,91)(67,134,92)(68,135,93)(69,136,94)(70,137,95)(71,138,96)(72,139,97)(73,140,98)(74,113,99)(75,114,100)(76,115,101)(77,116,102)(78,117,103)(79,118,104)(80,119,105)(81,120,106)(82,121,107)(83,122,108)(84,123,109), (29,151)(30,152)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,168)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,138,15,124)(2,137,16,123)(3,136,17,122)(4,135,18,121)(5,134,19,120)(6,133,20,119)(7,132,21,118)(8,131,22,117)(9,130,23,116)(10,129,24,115)(11,128,25,114)(12,127,26,113)(13,126,27,140)(14,125,28,139)(29,81,43,67)(30,80,44,66)(31,79,45,65)(32,78,46,64)(33,77,47,63)(34,76,48,62)(35,75,49,61)(36,74,50,60)(37,73,51,59)(38,72,52,58)(39,71,53,57)(40,70,54,84)(41,69,55,83)(42,68,56,82)(85,158,99,144)(86,157,100,143)(87,156,101,142)(88,155,102,141)(89,154,103,168)(90,153,104,167)(91,152,105,166)(92,151,106,165)(93,150,107,164)(94,149,108,163)(95,148,109,162)(96,147,110,161)(97,146,111,160)(98,145,112,159)>;
G:=Group( (1,161,39)(2,162,40)(3,163,41)(4,164,42)(5,165,43)(6,166,44)(7,167,45)(8,168,46)(9,141,47)(10,142,48)(11,143,49)(12,144,50)(13,145,51)(14,146,52)(15,147,53)(16,148,54)(17,149,55)(18,150,56)(19,151,29)(20,152,30)(21,153,31)(22,154,32)(23,155,33)(24,156,34)(25,157,35)(26,158,36)(27,159,37)(28,160,38)(57,124,110)(58,125,111)(59,126,112)(60,127,85)(61,128,86)(62,129,87)(63,130,88)(64,131,89)(65,132,90)(66,133,91)(67,134,92)(68,135,93)(69,136,94)(70,137,95)(71,138,96)(72,139,97)(73,140,98)(74,113,99)(75,114,100)(76,115,101)(77,116,102)(78,117,103)(79,118,104)(80,119,105)(81,120,106)(82,121,107)(83,122,108)(84,123,109), (29,151)(30,152)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,168)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,138,15,124)(2,137,16,123)(3,136,17,122)(4,135,18,121)(5,134,19,120)(6,133,20,119)(7,132,21,118)(8,131,22,117)(9,130,23,116)(10,129,24,115)(11,128,25,114)(12,127,26,113)(13,126,27,140)(14,125,28,139)(29,81,43,67)(30,80,44,66)(31,79,45,65)(32,78,46,64)(33,77,47,63)(34,76,48,62)(35,75,49,61)(36,74,50,60)(37,73,51,59)(38,72,52,58)(39,71,53,57)(40,70,54,84)(41,69,55,83)(42,68,56,82)(85,158,99,144)(86,157,100,143)(87,156,101,142)(88,155,102,141)(89,154,103,168)(90,153,104,167)(91,152,105,166)(92,151,106,165)(93,150,107,164)(94,149,108,163)(95,148,109,162)(96,147,110,161)(97,146,111,160)(98,145,112,159) );
G=PermutationGroup([[(1,161,39),(2,162,40),(3,163,41),(4,164,42),(5,165,43),(6,166,44),(7,167,45),(8,168,46),(9,141,47),(10,142,48),(11,143,49),(12,144,50),(13,145,51),(14,146,52),(15,147,53),(16,148,54),(17,149,55),(18,150,56),(19,151,29),(20,152,30),(21,153,31),(22,154,32),(23,155,33),(24,156,34),(25,157,35),(26,158,36),(27,159,37),(28,160,38),(57,124,110),(58,125,111),(59,126,112),(60,127,85),(61,128,86),(62,129,87),(63,130,88),(64,131,89),(65,132,90),(66,133,91),(67,134,92),(68,135,93),(69,136,94),(70,137,95),(71,138,96),(72,139,97),(73,140,98),(74,113,99),(75,114,100),(76,115,101),(77,116,102),(78,117,103),(79,118,104),(80,119,105),(81,120,106),(82,121,107),(83,122,108),(84,123,109)], [(29,151),(30,152),(31,153),(32,154),(33,155),(34,156),(35,157),(36,158),(37,159),(38,160),(39,161),(40,162),(41,163),(42,164),(43,165),(44,166),(45,167),(46,168),(47,141),(48,142),(49,143),(50,144),(51,145),(52,146),(53,147),(54,148),(55,149),(56,150),(57,110),(58,111),(59,112),(60,85),(61,86),(62,87),(63,88),(64,89),(65,90),(66,91),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,101),(77,102),(78,103),(79,104),(80,105),(81,106),(82,107),(83,108),(84,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,138,15,124),(2,137,16,123),(3,136,17,122),(4,135,18,121),(5,134,19,120),(6,133,20,119),(7,132,21,118),(8,131,22,117),(9,130,23,116),(10,129,24,115),(11,128,25,114),(12,127,26,113),(13,126,27,140),(14,125,28,139),(29,81,43,67),(30,80,44,66),(31,79,45,65),(32,78,46,64),(33,77,47,63),(34,76,48,62),(35,75,49,61),(36,74,50,60),(37,73,51,59),(38,72,52,58),(39,71,53,57),(40,70,54,84),(41,69,55,83),(42,68,56,82),(85,158,99,144),(86,157,100,143),(87,156,101,142),(88,155,102,141),(89,154,103,168),(90,153,104,167),(91,152,105,166),(92,151,106,165),(93,150,107,164),(94,149,108,163),(95,148,109,162),(96,147,110,161),(97,146,111,160),(98,145,112,159)]])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6 | 7A | 7B | 7C | 12A | 12B | 12C | 14A | 14B | 14C | 14D | ··· | 14I | 21A | 21B | 21C | 28A | ··· | 28F | 28G | ··· | 28L | 42A | 42B | 42C | 84A | ··· | 84F |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 7 | 7 | 7 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | ··· | 14 | 21 | 21 | 21 | 28 | ··· | 28 | 28 | ··· | 28 | 42 | 42 | 42 | 84 | ··· | 84 |
size | 1 | 1 | 3 | 3 | 2 | 2 | 6 | 14 | 14 | 42 | 42 | 2 | 2 | 2 | 2 | 4 | 28 | 28 | 2 | 2 | 2 | 6 | ··· | 6 | 4 | 4 | 4 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | 4 | 4 | 4 | ··· | 4 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | + | + | + | - | - | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | Q8 | D6 | D6 | D7 | D14 | D14 | D14 | Dic14 | S3×Q8 | S3×D7 | C2×S3×D7 | S3×Dic14 |
kernel | S3×Dic14 | S3×Dic7 | C21⋊Q8 | C3×Dic14 | S3×C28 | Dic42 | Dic14 | S3×C7 | Dic7 | C28 | C4×S3 | Dic3 | C12 | D6 | S3 | C7 | C4 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 3 | 3 | 3 | 3 | 12 | 1 | 3 | 3 | 6 |
Matrix representation of S3×Dic14 ►in GL4(𝔽337) generated by
336 | 336 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
336 | 336 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 112 | 94 |
0 | 0 | 243 | 219 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 145 | 322 |
0 | 0 | 211 | 192 |
G:=sub<GL(4,GF(337))| [336,1,0,0,336,0,0,0,0,0,1,0,0,0,0,1],[1,336,0,0,0,336,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,112,243,0,0,94,219],[1,0,0,0,0,1,0,0,0,0,145,211,0,0,322,192] >;
S3×Dic14 in GAP, Magma, Sage, TeX
S_3\times {\rm Dic}_{14}
% in TeX
G:=Group("S3xDic14");
// GroupNames label
G:=SmallGroup(336,140);
// by ID
G=gap.SmallGroup(336,140);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-7,48,218,50,490,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^28=1,d^2=c^14,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations