metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D12⋊5D7, D14.6D6, D6.2D14, C28.17D6, C12.27D14, C42.9C23, Dic42⋊10C2, C84.20C22, Dic7.11D6, Dic21.4C22, (C4×D7)⋊1S3, (C7×D12)⋊2C2, (C12×D7)⋊1C2, C7⋊3(C4○D12), C21⋊6(C4○D4), C21⋊D4⋊2C2, C4.13(S3×D7), C3⋊2(D4⋊2D7), (S3×Dic7)⋊2C2, C6.9(C22×D7), C14.9(C22×S3), (C6×D7).7C22, (S3×C14).2C22, (C3×Dic7).9C22, C2.13(C2×S3×D7), SmallGroup(336,145)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12⋊5D7
G = < a,b,c,d | a12=b2=c7=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a6b, dcd=c-1 >
Subgroups: 404 in 80 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C7, C2×C4, D4, Q8, Dic3, C12, C12, D6, C2×C6, D7, C14, C14, C4○D4, C21, Dic6, C4×S3, D12, C3⋊D4, C2×C12, Dic7, Dic7, C28, D14, C2×C14, S3×C7, C3×D7, C42, C4○D12, Dic14, C4×D7, C2×Dic7, C7⋊D4, C7×D4, C3×Dic7, Dic21, C84, C6×D7, S3×C14, D4⋊2D7, S3×Dic7, C21⋊D4, C12×D7, C7×D12, Dic42, D12⋊5D7
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, C4○D12, C22×D7, S3×D7, D4⋊2D7, C2×S3×D7, D12⋊5D7
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)
(1 39)(2 38)(3 37)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 124)(14 123)(15 122)(16 121)(17 132)(18 131)(19 130)(20 129)(21 128)(22 127)(23 126)(24 125)(25 92)(26 91)(27 90)(28 89)(29 88)(30 87)(31 86)(32 85)(33 96)(34 95)(35 94)(36 93)(49 136)(50 135)(51 134)(52 133)(53 144)(54 143)(55 142)(56 141)(57 140)(58 139)(59 138)(60 137)(61 105)(62 104)(63 103)(64 102)(65 101)(66 100)(67 99)(68 98)(69 97)(70 108)(71 107)(72 106)(73 166)(74 165)(75 164)(76 163)(77 162)(78 161)(79 160)(80 159)(81 158)(82 157)(83 168)(84 167)(109 150)(110 149)(111 148)(112 147)(113 146)(114 145)(115 156)(116 155)(117 154)(118 153)(119 152)(120 151)
(1 128 166 106 117 35 59)(2 129 167 107 118 36 60)(3 130 168 108 119 25 49)(4 131 157 97 120 26 50)(5 132 158 98 109 27 51)(6 121 159 99 110 28 52)(7 122 160 100 111 29 53)(8 123 161 101 112 30 54)(9 124 162 102 113 31 55)(10 125 163 103 114 32 56)(11 126 164 104 115 33 57)(12 127 165 105 116 34 58)(13 77 64 146 86 142 43)(14 78 65 147 87 143 44)(15 79 66 148 88 144 45)(16 80 67 149 89 133 46)(17 81 68 150 90 134 47)(18 82 69 151 91 135 48)(19 83 70 152 92 136 37)(20 84 71 153 93 137 38)(21 73 72 154 94 138 39)(22 74 61 155 95 139 40)(23 75 62 156 96 140 41)(24 76 63 145 85 141 42)
(1 59)(2 60)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 92)(14 93)(15 94)(16 95)(17 96)(18 85)(19 86)(20 87)(21 88)(22 89)(23 90)(24 91)(25 130)(26 131)(27 132)(28 121)(29 122)(30 123)(31 124)(32 125)(33 126)(34 127)(35 128)(36 129)(37 142)(38 143)(39 144)(40 133)(41 134)(42 135)(43 136)(44 137)(45 138)(46 139)(47 140)(48 141)(61 67)(62 68)(63 69)(64 70)(65 71)(66 72)(73 148)(74 149)(75 150)(76 151)(77 152)(78 153)(79 154)(80 155)(81 156)(82 145)(83 146)(84 147)(109 158)(110 159)(111 160)(112 161)(113 162)(114 163)(115 164)(116 165)(117 166)(118 167)(119 168)(120 157)
G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168), (1,39)(2,38)(3,37)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,124)(14,123)(15,122)(16,121)(17,132)(18,131)(19,130)(20,129)(21,128)(22,127)(23,126)(24,125)(25,92)(26,91)(27,90)(28,89)(29,88)(30,87)(31,86)(32,85)(33,96)(34,95)(35,94)(36,93)(49,136)(50,135)(51,134)(52,133)(53,144)(54,143)(55,142)(56,141)(57,140)(58,139)(59,138)(60,137)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,98)(69,97)(70,108)(71,107)(72,106)(73,166)(74,165)(75,164)(76,163)(77,162)(78,161)(79,160)(80,159)(81,158)(82,157)(83,168)(84,167)(109,150)(110,149)(111,148)(112,147)(113,146)(114,145)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151), (1,128,166,106,117,35,59)(2,129,167,107,118,36,60)(3,130,168,108,119,25,49)(4,131,157,97,120,26,50)(5,132,158,98,109,27,51)(6,121,159,99,110,28,52)(7,122,160,100,111,29,53)(8,123,161,101,112,30,54)(9,124,162,102,113,31,55)(10,125,163,103,114,32,56)(11,126,164,104,115,33,57)(12,127,165,105,116,34,58)(13,77,64,146,86,142,43)(14,78,65,147,87,143,44)(15,79,66,148,88,144,45)(16,80,67,149,89,133,46)(17,81,68,150,90,134,47)(18,82,69,151,91,135,48)(19,83,70,152,92,136,37)(20,84,71,153,93,137,38)(21,73,72,154,94,138,39)(22,74,61,155,95,139,40)(23,75,62,156,96,140,41)(24,76,63,145,85,141,42), (1,59)(2,60)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,92)(14,93)(15,94)(16,95)(17,96)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,130)(26,131)(27,132)(28,121)(29,122)(30,123)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,142)(38,143)(39,144)(40,133)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,148)(74,149)(75,150)(76,151)(77,152)(78,153)(79,154)(80,155)(81,156)(82,145)(83,146)(84,147)(109,158)(110,159)(111,160)(112,161)(113,162)(114,163)(115,164)(116,165)(117,166)(118,167)(119,168)(120,157)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168), (1,39)(2,38)(3,37)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,124)(14,123)(15,122)(16,121)(17,132)(18,131)(19,130)(20,129)(21,128)(22,127)(23,126)(24,125)(25,92)(26,91)(27,90)(28,89)(29,88)(30,87)(31,86)(32,85)(33,96)(34,95)(35,94)(36,93)(49,136)(50,135)(51,134)(52,133)(53,144)(54,143)(55,142)(56,141)(57,140)(58,139)(59,138)(60,137)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,98)(69,97)(70,108)(71,107)(72,106)(73,166)(74,165)(75,164)(76,163)(77,162)(78,161)(79,160)(80,159)(81,158)(82,157)(83,168)(84,167)(109,150)(110,149)(111,148)(112,147)(113,146)(114,145)(115,156)(116,155)(117,154)(118,153)(119,152)(120,151), (1,128,166,106,117,35,59)(2,129,167,107,118,36,60)(3,130,168,108,119,25,49)(4,131,157,97,120,26,50)(5,132,158,98,109,27,51)(6,121,159,99,110,28,52)(7,122,160,100,111,29,53)(8,123,161,101,112,30,54)(9,124,162,102,113,31,55)(10,125,163,103,114,32,56)(11,126,164,104,115,33,57)(12,127,165,105,116,34,58)(13,77,64,146,86,142,43)(14,78,65,147,87,143,44)(15,79,66,148,88,144,45)(16,80,67,149,89,133,46)(17,81,68,150,90,134,47)(18,82,69,151,91,135,48)(19,83,70,152,92,136,37)(20,84,71,153,93,137,38)(21,73,72,154,94,138,39)(22,74,61,155,95,139,40)(23,75,62,156,96,140,41)(24,76,63,145,85,141,42), (1,59)(2,60)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,92)(14,93)(15,94)(16,95)(17,96)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,130)(26,131)(27,132)(28,121)(29,122)(30,123)(31,124)(32,125)(33,126)(34,127)(35,128)(36,129)(37,142)(38,143)(39,144)(40,133)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,148)(74,149)(75,150)(76,151)(77,152)(78,153)(79,154)(80,155)(81,156)(82,145)(83,146)(84,147)(109,158)(110,159)(111,160)(112,161)(113,162)(114,163)(115,164)(116,165)(117,166)(118,167)(119,168)(120,157) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168)], [(1,39),(2,38),(3,37),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,124),(14,123),(15,122),(16,121),(17,132),(18,131),(19,130),(20,129),(21,128),(22,127),(23,126),(24,125),(25,92),(26,91),(27,90),(28,89),(29,88),(30,87),(31,86),(32,85),(33,96),(34,95),(35,94),(36,93),(49,136),(50,135),(51,134),(52,133),(53,144),(54,143),(55,142),(56,141),(57,140),(58,139),(59,138),(60,137),(61,105),(62,104),(63,103),(64,102),(65,101),(66,100),(67,99),(68,98),(69,97),(70,108),(71,107),(72,106),(73,166),(74,165),(75,164),(76,163),(77,162),(78,161),(79,160),(80,159),(81,158),(82,157),(83,168),(84,167),(109,150),(110,149),(111,148),(112,147),(113,146),(114,145),(115,156),(116,155),(117,154),(118,153),(119,152),(120,151)], [(1,128,166,106,117,35,59),(2,129,167,107,118,36,60),(3,130,168,108,119,25,49),(4,131,157,97,120,26,50),(5,132,158,98,109,27,51),(6,121,159,99,110,28,52),(7,122,160,100,111,29,53),(8,123,161,101,112,30,54),(9,124,162,102,113,31,55),(10,125,163,103,114,32,56),(11,126,164,104,115,33,57),(12,127,165,105,116,34,58),(13,77,64,146,86,142,43),(14,78,65,147,87,143,44),(15,79,66,148,88,144,45),(16,80,67,149,89,133,46),(17,81,68,150,90,134,47),(18,82,69,151,91,135,48),(19,83,70,152,92,136,37),(20,84,71,153,93,137,38),(21,73,72,154,94,138,39),(22,74,61,155,95,139,40),(23,75,62,156,96,140,41),(24,76,63,145,85,141,42)], [(1,59),(2,60),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,92),(14,93),(15,94),(16,95),(17,96),(18,85),(19,86),(20,87),(21,88),(22,89),(23,90),(24,91),(25,130),(26,131),(27,132),(28,121),(29,122),(30,123),(31,124),(32,125),(33,126),(34,127),(35,128),(36,129),(37,142),(38,143),(39,144),(40,133),(41,134),(42,135),(43,136),(44,137),(45,138),(46,139),(47,140),(48,141),(61,67),(62,68),(63,69),(64,70),(65,71),(66,72),(73,148),(74,149),(75,150),(76,151),(77,152),(78,153),(79,154),(80,155),(81,156),(82,145),(83,146),(84,147),(109,158),(110,159),(111,160),(112,161),(113,162),(114,163),(115,164),(116,165),(117,166),(118,167),(119,168),(120,157)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 7A | 7B | 7C | 12A | 12B | 12C | 12D | 14A | 14B | 14C | 14D | ··· | 14I | 21A | 21B | 21C | 28A | 28B | 28C | 42A | 42B | 42C | 84A | ··· | 84F |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 7 | 7 | 7 | 12 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | ··· | 14 | 21 | 21 | 21 | 28 | 28 | 28 | 42 | 42 | 42 | 84 | ··· | 84 |
size | 1 | 1 | 6 | 6 | 14 | 2 | 2 | 7 | 7 | 42 | 42 | 2 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 2 | 12 | ··· | 12 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | D7 | C4○D4 | D14 | D14 | C4○D12 | S3×D7 | D4⋊2D7 | C2×S3×D7 | D12⋊5D7 |
kernel | D12⋊5D7 | S3×Dic7 | C21⋊D4 | C12×D7 | C7×D12 | Dic42 | C4×D7 | Dic7 | C28 | D14 | D12 | C21 | C12 | D6 | C7 | C4 | C3 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 3 | 6 | 4 | 3 | 3 | 3 | 6 |
Matrix representation of D12⋊5D7 ►in GL6(𝔽337)
336 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 196 | 0 | 0 |
0 | 0 | 294 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 189 | 0 |
0 | 0 | 0 | 0 | 189 | 148 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 93 | 0 | 0 |
0 | 0 | 29 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 148 | 41 |
0 | 0 | 0 | 0 | 148 | 189 |
34 | 1 | 0 | 0 | 0 | 0 |
335 | 109 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
109 | 336 | 0 | 0 | 0 | 0 |
85 | 228 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 336 |
G:=sub<GL(6,GF(337))| [336,0,0,0,0,0,0,336,0,0,0,0,0,0,2,294,0,0,0,0,196,336,0,0,0,0,0,0,189,189,0,0,0,0,0,148],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,29,0,0,0,0,93,0,0,0,0,0,0,0,148,148,0,0,0,0,41,189],[34,335,0,0,0,0,1,109,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[109,85,0,0,0,0,336,228,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,336] >;
D12⋊5D7 in GAP, Magma, Sage, TeX
D_{12}\rtimes_5D_7
% in TeX
G:=Group("D12:5D7");
// GroupNames label
G:=SmallGroup(336,145);
// by ID
G=gap.SmallGroup(336,145);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-7,121,116,50,490,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations