Copied to
clipboard

G = D12⋊D7order 336 = 24·3·7

3rd semidirect product of D12 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D123D7, D6.1D14, C28.15D6, Dic143S3, C12.16D14, C42.5C23, Dic7.2D6, C84.27C22, D42.9C22, Dic21.11C22, (C4×D21)⋊6C2, (C7×D12)⋊5C2, C213(C4○D4), C7⋊D121C2, C4.20(S3×D7), C31(D42D7), (S3×Dic7)⋊1C2, C72(Q83S3), C6.5(C22×D7), (C3×Dic14)⋊5C2, C14.5(C22×S3), (S3×C14).1C22, (C3×Dic7).2C22, C2.9(C2×S3×D7), SmallGroup(336,141)

Series: Derived Chief Lower central Upper central

C1C42 — D12⋊D7
C1C7C21C42C3×Dic7S3×Dic7 — D12⋊D7
C21C42 — D12⋊D7
C1C2C4

Generators and relations for D12⋊D7
 G = < a,b,c,d | a12=b2=c7=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, dbd=a10b, dcd=c-1 >

Subgroups: 436 in 80 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C7, C2×C4, D4, Q8, Dic3, C12, C12, D6, D6, D7, C14, C14, C4○D4, C21, C4×S3, D12, D12, C3×Q8, Dic7, Dic7, C28, D14, C2×C14, S3×C7, D21, C42, Q83S3, Dic14, C4×D7, C2×Dic7, C7⋊D4, C7×D4, C3×Dic7, Dic21, C84, S3×C14, D42, D42D7, S3×Dic7, C7⋊D12, C3×Dic14, C7×D12, C4×D21, D12⋊D7
Quotients: C1, C2, C22, S3, C23, D6, D7, C4○D4, C22×S3, D14, Q83S3, C22×D7, S3×D7, D42D7, C2×S3×D7, D12⋊D7

Smallest permutation representation of D12⋊D7
On 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)
(1 121)(2 132)(3 131)(4 130)(5 129)(6 128)(7 127)(8 126)(9 125)(10 124)(11 123)(12 122)(13 112)(14 111)(15 110)(16 109)(17 120)(18 119)(19 118)(20 117)(21 116)(22 115)(23 114)(24 113)(25 142)(26 141)(27 140)(28 139)(29 138)(30 137)(31 136)(32 135)(33 134)(34 133)(35 144)(36 143)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(48 60)(61 85)(62 96)(63 95)(64 94)(65 93)(66 92)(67 91)(68 90)(69 89)(70 88)(71 87)(72 86)(73 100)(74 99)(75 98)(76 97)(77 108)(78 107)(79 106)(80 105)(81 104)(82 103)(83 102)(84 101)(145 166)(146 165)(147 164)(148 163)(149 162)(150 161)(151 160)(152 159)(153 158)(154 157)(155 168)(156 167)
(1 138 115 99 52 167 72)(2 139 116 100 53 168 61)(3 140 117 101 54 157 62)(4 141 118 102 55 158 63)(5 142 119 103 56 159 64)(6 143 120 104 57 160 65)(7 144 109 105 58 161 66)(8 133 110 106 59 162 67)(9 134 111 107 60 163 68)(10 135 112 108 49 164 69)(11 136 113 97 50 165 70)(12 137 114 98 51 166 71)(13 77 47 147 89 124 32)(14 78 48 148 90 125 33)(15 79 37 149 91 126 34)(16 80 38 150 92 127 35)(17 81 39 151 93 128 36)(18 82 40 152 94 129 25)(19 83 41 153 95 130 26)(20 84 42 154 96 131 27)(21 73 43 155 85 132 28)(22 74 44 156 86 121 29)(23 75 45 145 87 122 30)(24 76 46 146 88 123 31)
(1 72)(2 65)(3 70)(4 63)(5 68)(6 61)(7 66)(8 71)(9 64)(10 69)(11 62)(12 67)(13 37)(14 42)(15 47)(16 40)(17 45)(18 38)(19 43)(20 48)(21 41)(22 46)(23 39)(24 44)(25 150)(26 155)(27 148)(28 153)(29 146)(30 151)(31 156)(32 149)(33 154)(34 147)(35 152)(36 145)(49 112)(50 117)(51 110)(52 115)(53 120)(54 113)(55 118)(56 111)(57 116)(58 109)(59 114)(60 119)(73 83)(74 76)(75 81)(77 79)(78 84)(80 82)(85 130)(86 123)(87 128)(88 121)(89 126)(90 131)(91 124)(92 129)(93 122)(94 127)(95 132)(96 125)(97 101)(98 106)(100 104)(103 107)(133 166)(134 159)(135 164)(136 157)(137 162)(138 167)(139 160)(140 165)(141 158)(142 163)(143 168)(144 161)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168), (1,121)(2,132)(3,131)(4,130)(5,129)(6,128)(7,127)(8,126)(9,125)(10,124)(11,123)(12,122)(13,112)(14,111)(15,110)(16,109)(17,120)(18,119)(19,118)(20,117)(21,116)(22,115)(23,114)(24,113)(25,142)(26,141)(27,140)(28,139)(29,138)(30,137)(31,136)(32,135)(33,134)(34,133)(35,144)(36,143)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(48,60)(61,85)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,87)(72,86)(73,100)(74,99)(75,98)(76,97)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101)(145,166)(146,165)(147,164)(148,163)(149,162)(150,161)(151,160)(152,159)(153,158)(154,157)(155,168)(156,167), (1,138,115,99,52,167,72)(2,139,116,100,53,168,61)(3,140,117,101,54,157,62)(4,141,118,102,55,158,63)(5,142,119,103,56,159,64)(6,143,120,104,57,160,65)(7,144,109,105,58,161,66)(8,133,110,106,59,162,67)(9,134,111,107,60,163,68)(10,135,112,108,49,164,69)(11,136,113,97,50,165,70)(12,137,114,98,51,166,71)(13,77,47,147,89,124,32)(14,78,48,148,90,125,33)(15,79,37,149,91,126,34)(16,80,38,150,92,127,35)(17,81,39,151,93,128,36)(18,82,40,152,94,129,25)(19,83,41,153,95,130,26)(20,84,42,154,96,131,27)(21,73,43,155,85,132,28)(22,74,44,156,86,121,29)(23,75,45,145,87,122,30)(24,76,46,146,88,123,31), (1,72)(2,65)(3,70)(4,63)(5,68)(6,61)(7,66)(8,71)(9,64)(10,69)(11,62)(12,67)(13,37)(14,42)(15,47)(16,40)(17,45)(18,38)(19,43)(20,48)(21,41)(22,46)(23,39)(24,44)(25,150)(26,155)(27,148)(28,153)(29,146)(30,151)(31,156)(32,149)(33,154)(34,147)(35,152)(36,145)(49,112)(50,117)(51,110)(52,115)(53,120)(54,113)(55,118)(56,111)(57,116)(58,109)(59,114)(60,119)(73,83)(74,76)(75,81)(77,79)(78,84)(80,82)(85,130)(86,123)(87,128)(88,121)(89,126)(90,131)(91,124)(92,129)(93,122)(94,127)(95,132)(96,125)(97,101)(98,106)(100,104)(103,107)(133,166)(134,159)(135,164)(136,157)(137,162)(138,167)(139,160)(140,165)(141,158)(142,163)(143,168)(144,161)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168), (1,121)(2,132)(3,131)(4,130)(5,129)(6,128)(7,127)(8,126)(9,125)(10,124)(11,123)(12,122)(13,112)(14,111)(15,110)(16,109)(17,120)(18,119)(19,118)(20,117)(21,116)(22,115)(23,114)(24,113)(25,142)(26,141)(27,140)(28,139)(29,138)(30,137)(31,136)(32,135)(33,134)(34,133)(35,144)(36,143)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(48,60)(61,85)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,87)(72,86)(73,100)(74,99)(75,98)(76,97)(77,108)(78,107)(79,106)(80,105)(81,104)(82,103)(83,102)(84,101)(145,166)(146,165)(147,164)(148,163)(149,162)(150,161)(151,160)(152,159)(153,158)(154,157)(155,168)(156,167), (1,138,115,99,52,167,72)(2,139,116,100,53,168,61)(3,140,117,101,54,157,62)(4,141,118,102,55,158,63)(5,142,119,103,56,159,64)(6,143,120,104,57,160,65)(7,144,109,105,58,161,66)(8,133,110,106,59,162,67)(9,134,111,107,60,163,68)(10,135,112,108,49,164,69)(11,136,113,97,50,165,70)(12,137,114,98,51,166,71)(13,77,47,147,89,124,32)(14,78,48,148,90,125,33)(15,79,37,149,91,126,34)(16,80,38,150,92,127,35)(17,81,39,151,93,128,36)(18,82,40,152,94,129,25)(19,83,41,153,95,130,26)(20,84,42,154,96,131,27)(21,73,43,155,85,132,28)(22,74,44,156,86,121,29)(23,75,45,145,87,122,30)(24,76,46,146,88,123,31), (1,72)(2,65)(3,70)(4,63)(5,68)(6,61)(7,66)(8,71)(9,64)(10,69)(11,62)(12,67)(13,37)(14,42)(15,47)(16,40)(17,45)(18,38)(19,43)(20,48)(21,41)(22,46)(23,39)(24,44)(25,150)(26,155)(27,148)(28,153)(29,146)(30,151)(31,156)(32,149)(33,154)(34,147)(35,152)(36,145)(49,112)(50,117)(51,110)(52,115)(53,120)(54,113)(55,118)(56,111)(57,116)(58,109)(59,114)(60,119)(73,83)(74,76)(75,81)(77,79)(78,84)(80,82)(85,130)(86,123)(87,128)(88,121)(89,126)(90,131)(91,124)(92,129)(93,122)(94,127)(95,132)(96,125)(97,101)(98,106)(100,104)(103,107)(133,166)(134,159)(135,164)(136,157)(137,162)(138,167)(139,160)(140,165)(141,158)(142,163)(143,168)(144,161) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168)], [(1,121),(2,132),(3,131),(4,130),(5,129),(6,128),(7,127),(8,126),(9,125),(10,124),(11,123),(12,122),(13,112),(14,111),(15,110),(16,109),(17,120),(18,119),(19,118),(20,117),(21,116),(22,115),(23,114),(24,113),(25,142),(26,141),(27,140),(28,139),(29,138),(30,137),(31,136),(32,135),(33,134),(34,133),(35,144),(36,143),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(48,60),(61,85),(62,96),(63,95),(64,94),(65,93),(66,92),(67,91),(68,90),(69,89),(70,88),(71,87),(72,86),(73,100),(74,99),(75,98),(76,97),(77,108),(78,107),(79,106),(80,105),(81,104),(82,103),(83,102),(84,101),(145,166),(146,165),(147,164),(148,163),(149,162),(150,161),(151,160),(152,159),(153,158),(154,157),(155,168),(156,167)], [(1,138,115,99,52,167,72),(2,139,116,100,53,168,61),(3,140,117,101,54,157,62),(4,141,118,102,55,158,63),(5,142,119,103,56,159,64),(6,143,120,104,57,160,65),(7,144,109,105,58,161,66),(8,133,110,106,59,162,67),(9,134,111,107,60,163,68),(10,135,112,108,49,164,69),(11,136,113,97,50,165,70),(12,137,114,98,51,166,71),(13,77,47,147,89,124,32),(14,78,48,148,90,125,33),(15,79,37,149,91,126,34),(16,80,38,150,92,127,35),(17,81,39,151,93,128,36),(18,82,40,152,94,129,25),(19,83,41,153,95,130,26),(20,84,42,154,96,131,27),(21,73,43,155,85,132,28),(22,74,44,156,86,121,29),(23,75,45,145,87,122,30),(24,76,46,146,88,123,31)], [(1,72),(2,65),(3,70),(4,63),(5,68),(6,61),(7,66),(8,71),(9,64),(10,69),(11,62),(12,67),(13,37),(14,42),(15,47),(16,40),(17,45),(18,38),(19,43),(20,48),(21,41),(22,46),(23,39),(24,44),(25,150),(26,155),(27,148),(28,153),(29,146),(30,151),(31,156),(32,149),(33,154),(34,147),(35,152),(36,145),(49,112),(50,117),(51,110),(52,115),(53,120),(54,113),(55,118),(56,111),(57,116),(58,109),(59,114),(60,119),(73,83),(74,76),(75,81),(77,79),(78,84),(80,82),(85,130),(86,123),(87,128),(88,121),(89,126),(90,131),(91,124),(92,129),(93,122),(94,127),(95,132),(96,125),(97,101),(98,106),(100,104),(103,107),(133,166),(134,159),(135,164),(136,157),(137,162),(138,167),(139,160),(140,165),(141,158),(142,163),(143,168),(144,161)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E 6 7A7B7C12A12B12C14A14B14C14D···14I21A21B21C28A28B28C42A42B42C84A···84F
order12222344444677712121214141414···1421212128282842424284···84
size116642221414212122224282822212···124444444444···4

42 irreducible representations

dim111111222222244444
type++++++++++++++-+
imageC1C2C2C2C2C2S3D6D6D7C4○D4D14D14Q83S3S3×D7D42D7C2×S3×D7D12⋊D7
kernelD12⋊D7S3×Dic7C7⋊D12C3×Dic14C7×D12C4×D21Dic14Dic7C28D12C21C12D6C7C4C3C2C1
# reps122111121323613336

Matrix representation of D12⋊D7 in GL6(𝔽337)

18900000
2661480000
001000
000100
00001141
000043335
,
68630000
552690000
001000
000100
00002141
000043335
,
100000
010000
00336100
003230400
000010
000001
,
100000
2763360000
00336000
0032100
0000336196
000001

G:=sub<GL(6,GF(337))| [189,266,0,0,0,0,0,148,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,43,0,0,0,0,141,335],[68,55,0,0,0,0,63,269,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,43,0,0,0,0,141,335],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,336,32,0,0,0,0,1,304,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,276,0,0,0,0,0,336,0,0,0,0,0,0,336,32,0,0,0,0,0,1,0,0,0,0,0,0,336,0,0,0,0,0,196,1] >;

D12⋊D7 in GAP, Magma, Sage, TeX

D_{12}\rtimes D_7
% in TeX

G:=Group("D12:D7");
// GroupNames label

G:=SmallGroup(336,141);
// by ID

G=gap.SmallGroup(336,141);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,48,218,116,50,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽