# Extensions 1→N→G→Q→1 with N=C3×D28 and Q=C2

Direct product G=N×Q with N=C3×D28 and Q=C2
dρLabelID
C6×D28168C6xD28336,176

Semidirect products G=N:Q with N=C3×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D28)⋊1C2 = C3⋊D56φ: C2/C1C2 ⊆ Out C3×D281684+(C3xD28):1C2336,30
(C3×D28)⋊2C2 = D285S3φ: C2/C1C2 ⊆ Out C3×D281684-(C3xD28):2C2336,138
(C3×D28)⋊3C2 = S3×D28φ: C2/C1C2 ⊆ Out C3×D28844+(C3xD28):3C2336,149
(C3×D28)⋊4C2 = C21⋊D8φ: C2/C1C2 ⊆ Out C3×D281684(C3xD28):4C2336,29
(C3×D28)⋊5C2 = D28⋊S3φ: C2/C1C2 ⊆ Out C3×D281684(C3xD28):5C2336,139
(C3×D28)⋊6C2 = C28⋊D6φ: C2/C1C2 ⊆ Out C3×D28844(C3xD28):6C2336,150
(C3×D28)⋊7C2 = C3×D56φ: C2/C1C2 ⊆ Out C3×D281682(C3xD28):7C2336,61
(C3×D28)⋊8C2 = C3×D4⋊D7φ: C2/C1C2 ⊆ Out C3×D281684(C3xD28):8C2336,69
(C3×D28)⋊9C2 = C3×D4×D7φ: C2/C1C2 ⊆ Out C3×D28844(C3xD28):9C2336,178
(C3×D28)⋊10C2 = C3×Q82D7φ: C2/C1C2 ⊆ Out C3×D281684(C3xD28):10C2336,181
(C3×D28)⋊11C2 = C3×C4○D28φ: trivial image1682(C3xD28):11C2336,177

Non-split extensions G=N.Q with N=C3×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D28).1C2 = C6.D28φ: C2/C1C2 ⊆ Out C3×D281684-(C3xD28).1C2336,34
(C3×D28).2C2 = C28.D6φ: C2/C1C2 ⊆ Out C3×D281684(C3xD28).2C2336,32
(C3×D28).3C2 = C3×C56⋊C2φ: C2/C1C2 ⊆ Out C3×D281682(C3xD28).3C2336,60
(C3×D28).4C2 = C3×Q8⋊D7φ: C2/C1C2 ⊆ Out C3×D281684(C3xD28).4C2336,71

׿
×
𝔽