Extensions 1→N→G→Q→1 with N=C3xD28 and Q=C2

Direct product G=NxQ with N=C3xD28 and Q=C2
dρLabelID
C6xD28168C6xD28336,176

Semidirect products G=N:Q with N=C3xD28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD28):1C2 = C3:D56φ: C2/C1C2 ⊆ Out C3xD281684+(C3xD28):1C2336,30
(C3xD28):2C2 = D28:5S3φ: C2/C1C2 ⊆ Out C3xD281684-(C3xD28):2C2336,138
(C3xD28):3C2 = S3xD28φ: C2/C1C2 ⊆ Out C3xD28844+(C3xD28):3C2336,149
(C3xD28):4C2 = C21:D8φ: C2/C1C2 ⊆ Out C3xD281684(C3xD28):4C2336,29
(C3xD28):5C2 = D28:S3φ: C2/C1C2 ⊆ Out C3xD281684(C3xD28):5C2336,139
(C3xD28):6C2 = C28:D6φ: C2/C1C2 ⊆ Out C3xD28844(C3xD28):6C2336,150
(C3xD28):7C2 = C3xD56φ: C2/C1C2 ⊆ Out C3xD281682(C3xD28):7C2336,61
(C3xD28):8C2 = C3xD4:D7φ: C2/C1C2 ⊆ Out C3xD281684(C3xD28):8C2336,69
(C3xD28):9C2 = C3xD4xD7φ: C2/C1C2 ⊆ Out C3xD28844(C3xD28):9C2336,178
(C3xD28):10C2 = C3xQ8:2D7φ: C2/C1C2 ⊆ Out C3xD281684(C3xD28):10C2336,181
(C3xD28):11C2 = C3xC4oD28φ: trivial image1682(C3xD28):11C2336,177

Non-split extensions G=N.Q with N=C3xD28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD28).1C2 = C6.D28φ: C2/C1C2 ⊆ Out C3xD281684-(C3xD28).1C2336,34
(C3xD28).2C2 = C28.D6φ: C2/C1C2 ⊆ Out C3xD281684(C3xD28).2C2336,32
(C3xD28).3C2 = C3xC56:C2φ: C2/C1C2 ⊆ Out C3xD281682(C3xD28).3C2336,60
(C3xD28).4C2 = C3xQ8:D7φ: C2/C1C2 ⊆ Out C3xD281684(C3xD28).4C2336,71

׿
x
:
Z
F
o
wr
Q
<