direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3×Q8⋊D7, D28.4C6, C42.42D4, C21⋊14SD16, C12.38D14, C84.38C22, C7⋊C8⋊10C6, Q8⋊2(C3×D7), (C3×Q8)⋊4D7, C4.3(C6×D7), C7⋊7(C3×SD16), (C7×Q8)⋊11C6, (Q8×C21)⋊4C2, C28.24(C2×C6), (C3×D28).4C2, C14.25(C3×D4), C6.25(C7⋊D4), (C3×C7⋊C8)⋊10C2, C2.6(C3×C7⋊D4), SmallGroup(336,71)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Q8⋊D7
G = < a,b,c,d,e | a3=b4=d7=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ece=b-1c, ede=d-1 >
(1 57 29)(2 58 30)(3 59 31)(4 60 32)(5 61 33)(6 62 34)(7 63 35)(8 64 36)(9 65 37)(10 66 38)(11 67 39)(12 68 40)(13 69 41)(14 70 42)(15 71 43)(16 72 44)(17 73 45)(18 74 46)(19 75 47)(20 76 48)(21 77 49)(22 78 50)(23 79 51)(24 80 52)(25 81 53)(26 82 54)(27 83 55)(28 84 56)(85 141 113)(86 142 114)(87 143 115)(88 144 116)(89 145 117)(90 146 118)(91 147 119)(92 148 120)(93 149 121)(94 150 122)(95 151 123)(96 152 124)(97 153 125)(98 154 126)(99 155 127)(100 156 128)(101 157 129)(102 158 130)(103 159 131)(104 160 132)(105 161 133)(106 162 134)(107 163 135)(108 164 136)(109 165 137)(110 166 138)(111 167 139)(112 168 140)
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)(57 78 64 71)(58 79 65 72)(59 80 66 73)(60 81 67 74)(61 82 68 75)(62 83 69 76)(63 84 70 77)(85 99 92 106)(86 100 93 107)(87 101 94 108)(88 102 95 109)(89 103 96 110)(90 104 97 111)(91 105 98 112)(113 127 120 134)(114 128 121 135)(115 129 122 136)(116 130 123 137)(117 131 124 138)(118 132 125 139)(119 133 126 140)(141 155 148 162)(142 156 149 163)(143 157 150 164)(144 158 151 165)(145 159 152 166)(146 160 153 167)(147 161 154 168)
(1 92 8 85)(2 93 9 86)(3 94 10 87)(4 95 11 88)(5 96 12 89)(6 97 13 90)(7 98 14 91)(15 106 22 99)(16 107 23 100)(17 108 24 101)(18 109 25 102)(19 110 26 103)(20 111 27 104)(21 112 28 105)(29 120 36 113)(30 121 37 114)(31 122 38 115)(32 123 39 116)(33 124 40 117)(34 125 41 118)(35 126 42 119)(43 134 50 127)(44 135 51 128)(45 136 52 129)(46 137 53 130)(47 138 54 131)(48 139 55 132)(49 140 56 133)(57 148 64 141)(58 149 65 142)(59 150 66 143)(60 151 67 144)(61 152 68 145)(62 153 69 146)(63 154 70 147)(71 162 78 155)(72 163 79 156)(73 164 80 157)(74 165 81 158)(75 166 82 159)(76 167 83 160)(77 168 84 161)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)
(1 7)(2 6)(3 5)(8 14)(9 13)(10 12)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(29 35)(30 34)(31 33)(36 42)(37 41)(38 40)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(57 63)(58 62)(59 61)(64 70)(65 69)(66 68)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(85 105)(86 104)(87 103)(88 102)(89 101)(90 100)(91 99)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(113 133)(114 132)(115 131)(116 130)(117 129)(118 128)(119 127)(120 140)(121 139)(122 138)(123 137)(124 136)(125 135)(126 134)(141 161)(142 160)(143 159)(144 158)(145 157)(146 156)(147 155)(148 168)(149 167)(150 166)(151 165)(152 164)(153 163)(154 162)
G:=sub<Sym(168)| (1,57,29)(2,58,30)(3,59,31)(4,60,32)(5,61,33)(6,62,34)(7,63,35)(8,64,36)(9,65,37)(10,66,38)(11,67,39)(12,68,40)(13,69,41)(14,70,42)(15,71,43)(16,72,44)(17,73,45)(18,74,46)(19,75,47)(20,76,48)(21,77,49)(22,78,50)(23,79,51)(24,80,52)(25,81,53)(26,82,54)(27,83,55)(28,84,56)(85,141,113)(86,142,114)(87,143,115)(88,144,116)(89,145,117)(90,146,118)(91,147,119)(92,148,120)(93,149,121)(94,150,122)(95,151,123)(96,152,124)(97,153,125)(98,154,126)(99,155,127)(100,156,128)(101,157,129)(102,158,130)(103,159,131)(104,160,132)(105,161,133)(106,162,134)(107,163,135)(108,164,136)(109,165,137)(110,166,138)(111,167,139)(112,168,140), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112)(113,127,120,134)(114,128,121,135)(115,129,122,136)(116,130,123,137)(117,131,124,138)(118,132,125,139)(119,133,126,140)(141,155,148,162)(142,156,149,163)(143,157,150,164)(144,158,151,165)(145,159,152,166)(146,160,153,167)(147,161,154,168), (1,92,8,85)(2,93,9,86)(3,94,10,87)(4,95,11,88)(5,96,12,89)(6,97,13,90)(7,98,14,91)(15,106,22,99)(16,107,23,100)(17,108,24,101)(18,109,25,102)(19,110,26,103)(20,111,27,104)(21,112,28,105)(29,120,36,113)(30,121,37,114)(31,122,38,115)(32,123,39,116)(33,124,40,117)(34,125,41,118)(35,126,42,119)(43,134,50,127)(44,135,51,128)(45,136,52,129)(46,137,53,130)(47,138,54,131)(48,139,55,132)(49,140,56,133)(57,148,64,141)(58,149,65,142)(59,150,66,143)(60,151,67,144)(61,152,68,145)(62,153,69,146)(63,154,70,147)(71,162,78,155)(72,163,79,156)(73,164,80,157)(74,165,81,158)(75,166,82,159)(76,167,83,160)(77,168,84,161), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,35)(30,34)(31,33)(36,42)(37,41)(38,40)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(113,133)(114,132)(115,131)(116,130)(117,129)(118,128)(119,127)(120,140)(121,139)(122,138)(123,137)(124,136)(125,135)(126,134)(141,161)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,168)(149,167)(150,166)(151,165)(152,164)(153,163)(154,162)>;
G:=Group( (1,57,29)(2,58,30)(3,59,31)(4,60,32)(5,61,33)(6,62,34)(7,63,35)(8,64,36)(9,65,37)(10,66,38)(11,67,39)(12,68,40)(13,69,41)(14,70,42)(15,71,43)(16,72,44)(17,73,45)(18,74,46)(19,75,47)(20,76,48)(21,77,49)(22,78,50)(23,79,51)(24,80,52)(25,81,53)(26,82,54)(27,83,55)(28,84,56)(85,141,113)(86,142,114)(87,143,115)(88,144,116)(89,145,117)(90,146,118)(91,147,119)(92,148,120)(93,149,121)(94,150,122)(95,151,123)(96,152,124)(97,153,125)(98,154,126)(99,155,127)(100,156,128)(101,157,129)(102,158,130)(103,159,131)(104,160,132)(105,161,133)(106,162,134)(107,163,135)(108,164,136)(109,165,137)(110,166,138)(111,167,139)(112,168,140), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112)(113,127,120,134)(114,128,121,135)(115,129,122,136)(116,130,123,137)(117,131,124,138)(118,132,125,139)(119,133,126,140)(141,155,148,162)(142,156,149,163)(143,157,150,164)(144,158,151,165)(145,159,152,166)(146,160,153,167)(147,161,154,168), (1,92,8,85)(2,93,9,86)(3,94,10,87)(4,95,11,88)(5,96,12,89)(6,97,13,90)(7,98,14,91)(15,106,22,99)(16,107,23,100)(17,108,24,101)(18,109,25,102)(19,110,26,103)(20,111,27,104)(21,112,28,105)(29,120,36,113)(30,121,37,114)(31,122,38,115)(32,123,39,116)(33,124,40,117)(34,125,41,118)(35,126,42,119)(43,134,50,127)(44,135,51,128)(45,136,52,129)(46,137,53,130)(47,138,54,131)(48,139,55,132)(49,140,56,133)(57,148,64,141)(58,149,65,142)(59,150,66,143)(60,151,67,144)(61,152,68,145)(62,153,69,146)(63,154,70,147)(71,162,78,155)(72,163,79,156)(73,164,80,157)(74,165,81,158)(75,166,82,159)(76,167,83,160)(77,168,84,161), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,35)(30,34)(31,33)(36,42)(37,41)(38,40)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(113,133)(114,132)(115,131)(116,130)(117,129)(118,128)(119,127)(120,140)(121,139)(122,138)(123,137)(124,136)(125,135)(126,134)(141,161)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,168)(149,167)(150,166)(151,165)(152,164)(153,163)(154,162) );
G=PermutationGroup([[(1,57,29),(2,58,30),(3,59,31),(4,60,32),(5,61,33),(6,62,34),(7,63,35),(8,64,36),(9,65,37),(10,66,38),(11,67,39),(12,68,40),(13,69,41),(14,70,42),(15,71,43),(16,72,44),(17,73,45),(18,74,46),(19,75,47),(20,76,48),(21,77,49),(22,78,50),(23,79,51),(24,80,52),(25,81,53),(26,82,54),(27,83,55),(28,84,56),(85,141,113),(86,142,114),(87,143,115),(88,144,116),(89,145,117),(90,146,118),(91,147,119),(92,148,120),(93,149,121),(94,150,122),(95,151,123),(96,152,124),(97,153,125),(98,154,126),(99,155,127),(100,156,128),(101,157,129),(102,158,130),(103,159,131),(104,160,132),(105,161,133),(106,162,134),(107,163,135),(108,164,136),(109,165,137),(110,166,138),(111,167,139),(112,168,140)], [(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49),(57,78,64,71),(58,79,65,72),(59,80,66,73),(60,81,67,74),(61,82,68,75),(62,83,69,76),(63,84,70,77),(85,99,92,106),(86,100,93,107),(87,101,94,108),(88,102,95,109),(89,103,96,110),(90,104,97,111),(91,105,98,112),(113,127,120,134),(114,128,121,135),(115,129,122,136),(116,130,123,137),(117,131,124,138),(118,132,125,139),(119,133,126,140),(141,155,148,162),(142,156,149,163),(143,157,150,164),(144,158,151,165),(145,159,152,166),(146,160,153,167),(147,161,154,168)], [(1,92,8,85),(2,93,9,86),(3,94,10,87),(4,95,11,88),(5,96,12,89),(6,97,13,90),(7,98,14,91),(15,106,22,99),(16,107,23,100),(17,108,24,101),(18,109,25,102),(19,110,26,103),(20,111,27,104),(21,112,28,105),(29,120,36,113),(30,121,37,114),(31,122,38,115),(32,123,39,116),(33,124,40,117),(34,125,41,118),(35,126,42,119),(43,134,50,127),(44,135,51,128),(45,136,52,129),(46,137,53,130),(47,138,54,131),(48,139,55,132),(49,140,56,133),(57,148,64,141),(58,149,65,142),(59,150,66,143),(60,151,67,144),(61,152,68,145),(62,153,69,146),(63,154,70,147),(71,162,78,155),(72,163,79,156),(73,164,80,157),(74,165,81,158),(75,166,82,159),(76,167,83,160),(77,168,84,161)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168)], [(1,7),(2,6),(3,5),(8,14),(9,13),(10,12),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(29,35),(30,34),(31,33),(36,42),(37,41),(38,40),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(57,63),(58,62),(59,61),(64,70),(65,69),(66,68),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(85,105),(86,104),(87,103),(88,102),(89,101),(90,100),(91,99),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(113,133),(114,132),(115,131),(116,130),(117,129),(118,128),(119,127),(120,140),(121,139),(122,138),(123,137),(124,136),(125,135),(126,134),(141,161),(142,160),(143,159),(144,158),(145,157),(146,156),(147,155),(148,168),(149,167),(150,166),(151,165),(152,164),(153,163),(154,162)]])
66 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 7A | 7B | 7C | 8A | 8B | 12A | 12B | 12C | 12D | 14A | 14B | 14C | 21A | ··· | 21F | 24A | 24B | 24C | 24D | 28A | ··· | 28I | 42A | ··· | 42F | 84A | ··· | 84R |
order | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 8 | 8 | 12 | 12 | 12 | 12 | 14 | 14 | 14 | 21 | ··· | 21 | 24 | 24 | 24 | 24 | 28 | ··· | 28 | 42 | ··· | 42 | 84 | ··· | 84 |
size | 1 | 1 | 28 | 1 | 1 | 2 | 4 | 1 | 1 | 28 | 28 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | ··· | 2 | 14 | 14 | 14 | 14 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | D4 | D7 | SD16 | C3×D4 | D14 | C3×D7 | C3×SD16 | C7⋊D4 | C6×D7 | C3×C7⋊D4 | Q8⋊D7 | C3×Q8⋊D7 |
kernel | C3×Q8⋊D7 | C3×C7⋊C8 | C3×D28 | Q8×C21 | Q8⋊D7 | C7⋊C8 | D28 | C7×Q8 | C42 | C3×Q8 | C21 | C14 | C12 | Q8 | C7 | C6 | C4 | C2 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 3 | 2 | 2 | 3 | 6 | 4 | 6 | 6 | 12 | 3 | 6 |
Matrix representation of C3×Q8⋊D7 ►in GL4(𝔽337) generated by
208 | 0 | 0 | 0 |
0 | 208 | 0 | 0 |
0 | 0 | 128 | 0 |
0 | 0 | 0 | 128 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 335 |
0 | 0 | 1 | 336 |
336 | 0 | 0 | 0 |
0 | 336 | 0 | 0 |
0 | 0 | 196 | 141 |
0 | 0 | 98 | 141 |
0 | 336 | 0 | 0 |
1 | 303 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
34 | 336 | 0 | 0 |
144 | 303 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 336 |
G:=sub<GL(4,GF(337))| [208,0,0,0,0,208,0,0,0,0,128,0,0,0,0,128],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,335,336],[336,0,0,0,0,336,0,0,0,0,196,98,0,0,141,141],[0,1,0,0,336,303,0,0,0,0,1,0,0,0,0,1],[34,144,0,0,336,303,0,0,0,0,1,1,0,0,0,336] >;
C3×Q8⋊D7 in GAP, Magma, Sage, TeX
C_3\times Q_8\rtimes D_7
% in TeX
G:=Group("C3xQ8:D7");
// GroupNames label
G:=SmallGroup(336,71);
// by ID
G=gap.SmallGroup(336,71);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-2,-7,169,151,867,441,69,10373]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=d^7=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations
Export