Extensions 1→N→G→Q→1 with N=C2×C4 and Q=F7

Direct product G=N×Q with N=C2×C4 and Q=F7
dρLabelID
C2×C4×F756C2xC4xF7336,122

Semidirect products G=N:Q with N=C2×C4 and Q=F7
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1F7 = D14⋊C12φ: F7/C7⋊C3C2 ⊆ Aut C2×C456(C2xC4):1F7336,17
(C2×C4)⋊2F7 = C2×C4⋊F7φ: F7/C7⋊C3C2 ⊆ Aut C2×C456(C2xC4):2F7336,123
(C2×C4)⋊3F7 = D286C6φ: F7/C7⋊C3C2 ⊆ Aut C2×C4566(C2xC4):3F7336,124

Non-split extensions G=N.Q with N=C2×C4 and Q=F7
extensionφ:Q→Aut NdρLabelID
(C2×C4).1F7 = Dic7⋊C12φ: F7/C7⋊C3C2 ⊆ Aut C2×C4112(C2xC4).1F7336,15
(C2×C4).2F7 = C28.C12φ: F7/C7⋊C3C2 ⊆ Aut C2×C4566(C2xC4).2F7336,13
(C2×C4).3F7 = C28⋊C12φ: F7/C7⋊C3C2 ⊆ Aut C2×C4112(C2xC4).3F7336,16
(C2×C4).4F7 = C2×C4.F7φ: F7/C7⋊C3C2 ⊆ Aut C2×C4112(C2xC4).4F7336,121
(C2×C4).5F7 = C2×C7⋊C24central extension (φ=1)112(C2xC4).5F7336,12
(C2×C4).6F7 = C4×C7⋊C12central extension (φ=1)112(C2xC4).6F7336,14

׿
×
𝔽