Copied to
clipboard

G = C4×C7⋊C12order 336 = 24·3·7

Direct product of C4 and C7⋊C12

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C4×C7⋊C12, C282C12, Dic72C12, C7⋊(C4×C12), C7⋊C3⋊C42, (C4×Dic7)⋊C3, (C2×C4).6F7, C2.2(C4×F7), (C2×C28).5C6, C14.3(C2×C12), C22.3(C2×F7), (C2×Dic7).4C6, (C4×C7⋊C3)⋊2C4, C2.2(C2×C7⋊C12), (C2×C7⋊C12).4C2, (C2×C14).2(C2×C6), (C22×C7⋊C3).2C22, (C2×C4×C7⋊C3).5C2, (C2×C7⋊C3).7(C2×C4), SmallGroup(336,14)

Series: Derived Chief Lower central Upper central

C1C7 — C4×C7⋊C12
C1C7C14C2×C14C22×C7⋊C3C2×C7⋊C12 — C4×C7⋊C12
C7 — C4×C7⋊C12
C1C2×C4

Generators and relations for C4×C7⋊C12
 G = < a,b,c | a4=b7=c12=1, ab=ba, ac=ca, cbc-1=b5 >

Subgroups: 192 in 60 conjugacy classes, 38 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C7, C2×C4, C2×C4, C12, C2×C6, C14, C14, C42, C7⋊C3, C2×C12, Dic7, C28, C2×C14, C2×C7⋊C3, C2×C7⋊C3, C4×C12, C2×Dic7, C2×C28, C7⋊C12, C4×C7⋊C3, C22×C7⋊C3, C4×Dic7, C2×C7⋊C12, C2×C4×C7⋊C3, C4×C7⋊C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, C2×C6, C42, C2×C12, F7, C4×C12, C7⋊C12, C2×F7, C4×F7, C2×C7⋊C12, C4×C7⋊C12

Smallest permutation representation of C4×C7⋊C12
On 112 points
Generators in S112
(1 12 6 14)(2 9 7 15)(3 10 8 16)(4 11 5 13)(17 49 85 105)(18 50 86 106)(19 51 87 107)(20 52 88 108)(21 41 77 109)(22 42 78 110)(23 43 79 111)(24 44 80 112)(25 45 81 101)(26 46 82 102)(27 47 83 103)(28 48 84 104)(29 75 57 91)(30 76 58 92)(31 65 59 93)(32 66 60 94)(33 67 61 95)(34 68 62 96)(35 69 63 97)(36 70 64 98)(37 71 53 99)(38 72 54 100)(39 73 55 89)(40 74 56 90)
(1 98 94 26 90 18 22)(2 19 27 99 23 91 95)(3 92 100 20 96 24 28)(4 25 21 93 17 97 89)(5 81 77 65 85 69 73)(6 70 66 82 74 86 78)(7 87 83 71 79 75 67)(8 76 72 88 68 80 84)(9 51 47 37 43 29 33)(10 30 38 52 34 44 48)(11 45 41 31 49 35 39)(12 36 32 46 40 50 42)(13 101 109 59 105 63 55)(14 64 60 102 56 106 110)(15 107 103 53 111 57 61)(16 58 54 108 62 112 104)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,12,6,14)(2,9,7,15)(3,10,8,16)(4,11,5,13)(17,49,85,105)(18,50,86,106)(19,51,87,107)(20,52,88,108)(21,41,77,109)(22,42,78,110)(23,43,79,111)(24,44,80,112)(25,45,81,101)(26,46,82,102)(27,47,83,103)(28,48,84,104)(29,75,57,91)(30,76,58,92)(31,65,59,93)(32,66,60,94)(33,67,61,95)(34,68,62,96)(35,69,63,97)(36,70,64,98)(37,71,53,99)(38,72,54,100)(39,73,55,89)(40,74,56,90), (1,98,94,26,90,18,22)(2,19,27,99,23,91,95)(3,92,100,20,96,24,28)(4,25,21,93,17,97,89)(5,81,77,65,85,69,73)(6,70,66,82,74,86,78)(7,87,83,71,79,75,67)(8,76,72,88,68,80,84)(9,51,47,37,43,29,33)(10,30,38,52,34,44,48)(11,45,41,31,49,35,39)(12,36,32,46,40,50,42)(13,101,109,59,105,63,55)(14,64,60,102,56,106,110)(15,107,103,53,111,57,61)(16,58,54,108,62,112,104), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,12,6,14)(2,9,7,15)(3,10,8,16)(4,11,5,13)(17,49,85,105)(18,50,86,106)(19,51,87,107)(20,52,88,108)(21,41,77,109)(22,42,78,110)(23,43,79,111)(24,44,80,112)(25,45,81,101)(26,46,82,102)(27,47,83,103)(28,48,84,104)(29,75,57,91)(30,76,58,92)(31,65,59,93)(32,66,60,94)(33,67,61,95)(34,68,62,96)(35,69,63,97)(36,70,64,98)(37,71,53,99)(38,72,54,100)(39,73,55,89)(40,74,56,90), (1,98,94,26,90,18,22)(2,19,27,99,23,91,95)(3,92,100,20,96,24,28)(4,25,21,93,17,97,89)(5,81,77,65,85,69,73)(6,70,66,82,74,86,78)(7,87,83,71,79,75,67)(8,76,72,88,68,80,84)(9,51,47,37,43,29,33)(10,30,38,52,34,44,48)(11,45,41,31,49,35,39)(12,36,32,46,40,50,42)(13,101,109,59,105,63,55)(14,64,60,102,56,106,110)(15,107,103,53,111,57,61)(16,58,54,108,62,112,104), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,12,6,14),(2,9,7,15),(3,10,8,16),(4,11,5,13),(17,49,85,105),(18,50,86,106),(19,51,87,107),(20,52,88,108),(21,41,77,109),(22,42,78,110),(23,43,79,111),(24,44,80,112),(25,45,81,101),(26,46,82,102),(27,47,83,103),(28,48,84,104),(29,75,57,91),(30,76,58,92),(31,65,59,93),(32,66,60,94),(33,67,61,95),(34,68,62,96),(35,69,63,97),(36,70,64,98),(37,71,53,99),(38,72,54,100),(39,73,55,89),(40,74,56,90)], [(1,98,94,26,90,18,22),(2,19,27,99,23,91,95),(3,92,100,20,96,24,28),(4,25,21,93,17,97,89),(5,81,77,65,85,69,73),(6,70,66,82,74,86,78),(7,87,83,71,79,75,67),(8,76,72,88,68,80,84),(9,51,47,37,43,29,33),(10,30,38,52,34,44,48),(11,45,41,31,49,35,39),(12,36,32,46,40,50,42),(13,101,109,59,105,63,55),(14,64,60,102,56,106,110),(15,107,103,53,111,57,61),(16,58,54,108,62,112,104)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112)]])

56 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E···4L6A···6F 7 12A···12X14A14B14C28A28B28C28D
order12223344444···46···6712···1214141428282828
size11117711117···77···767···76666666

56 irreducible representations

dim11111111116666
type++++-+
imageC1C2C2C3C4C4C6C6C12C12F7C7⋊C12C2×F7C4×F7
kernelC4×C7⋊C12C2×C7⋊C12C2×C4×C7⋊C3C4×Dic7C7⋊C12C4×C7⋊C3C2×Dic7C2×C28Dic7C28C2×C4C4C22C2
# reps121284421681214

Matrix representation of C4×C7⋊C12 in GL7(𝔽337)

1000000
018900000
001890000
000189000
000018900
000001890
000000189
,
1000000
000000336
010000336
001000336
000100336
000010336
000001336
,
265000000
08008240329
08824003290
0248032983290
00832980240
0080248329329
0824832900329

G:=sub<GL(7,GF(337))| [1,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,336,336,336,336,336,336],[265,0,0,0,0,0,0,0,8,8,248,0,0,8,0,0,8,0,8,8,248,0,0,240,329,329,0,329,0,8,0,8,8,248,0,0,240,329,329,0,329,0,0,329,0,0,240,329,329] >;

C4×C7⋊C12 in GAP, Magma, Sage, TeX

C_4\times C_7\rtimes C_{12}
% in TeX

G:=Group("C4xC7:C12");
// GroupNames label

G:=SmallGroup(336,14);
// by ID

G=gap.SmallGroup(336,14);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,72,151,10373,1745]);
// Polycyclic

G:=Group<a,b,c|a^4=b^7=c^12=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

׿
×
𝔽