Copied to
clipboard

G = C2×C4.F7order 336 = 24·3·7

Direct product of C2 and C4.F7

direct product, metabelian, supersoluble, monomial

Aliases: C2×C4.F7, Dic145C6, C14⋊(C3×Q8), C71(C6×Q8), (C2×Dic14)⋊C3, (C2×C4).4F7, (C2×C28).3C6, C4.11(C2×F7), C28.11(C2×C6), C7⋊C12.1C22, C22.8(C2×F7), C2.3(C22×F7), C14.1(C22×C6), Dic7.1(C2×C6), (C2×Dic7).3C6, (C2×C7⋊C3)⋊Q8, C7⋊C31(C2×Q8), (C2×C7⋊C12).3C2, (C2×C14).7(C2×C6), (C2×C7⋊C3).1C23, (C4×C7⋊C3).11C22, (C22×C7⋊C3).7C22, (C2×C4×C7⋊C3).3C2, SmallGroup(336,121)

Series: Derived Chief Lower central Upper central

C1C14 — C2×C4.F7
C1C7C14C2×C7⋊C3C7⋊C12C2×C7⋊C12 — C2×C4.F7
C7C14 — C2×C4.F7
C1C22C2×C4

Generators and relations for C2×C4.F7
 G = < a,b,c,d | a2=b4=c7=1, d6=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c5 >

Subgroups: 256 in 76 conjugacy classes, 46 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C7, C2×C4, C2×C4, Q8, C12, C2×C6, C14, C14, C2×Q8, C7⋊C3, C2×C12, C3×Q8, Dic7, C28, C2×C14, C2×C7⋊C3, C2×C7⋊C3, C6×Q8, Dic14, C2×Dic7, C2×C28, C7⋊C12, C4×C7⋊C3, C22×C7⋊C3, C2×Dic14, C4.F7, C2×C7⋊C12, C2×C4×C7⋊C3, C2×C4.F7
Quotients: C1, C2, C3, C22, C6, Q8, C23, C2×C6, C2×Q8, C3×Q8, C22×C6, F7, C6×Q8, C2×F7, C4.F7, C22×F7, C2×C4.F7

Smallest permutation representation of C2×C4.F7
On 112 points
Generators in S112
(1 9)(2 10)(3 11)(4 12)(5 14)(6 15)(7 16)(8 13)(17 50)(18 51)(19 52)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 71)(30 72)(31 73)(32 74)(33 75)(34 76)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(53 94)(54 95)(55 96)(56 97)(57 98)(58 99)(59 100)(60 89)(61 90)(62 91)(63 92)(64 93)(77 108)(78 109)(79 110)(80 111)(81 112)(82 101)(83 102)(84 103)(85 104)(86 105)(87 106)(88 107)
(1 16 3 14)(2 15 4 13)(5 9 7 11)(6 12 8 10)(17 61 23 55)(18 56 24 62)(19 63 25 57)(20 58 26 64)(21 53 27 59)(22 60 28 54)(29 103 35 109)(30 110 36 104)(31 105 37 111)(32 112 38 106)(33 107 39 101)(34 102 40 108)(41 99 47 93)(42 94 48 100)(43 89 49 95)(44 96 50 90)(45 91 51 97)(46 98 52 92)(65 78 71 84)(66 85 72 79)(67 80 73 86)(68 87 74 81)(69 82 75 88)(70 77 76 83)
(1 37 33 26 29 18 22)(2 19 27 38 23 30 34)(3 31 39 20 35 24 28)(4 25 21 32 17 36 40)(5 86 82 99 78 91 95)(6 92 100 87 96 79 83)(7 80 88 93 84 97 89)(8 98 94 81 90 85 77)(9 67 75 47 71 51 43)(10 52 48 68 44 72 76)(11 73 69 41 65 45 49)(12 46 42 74 50 66 70)(13 57 53 112 61 104 108)(14 105 101 58 109 62 54)(15 63 59 106 55 110 102)(16 111 107 64 103 56 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,9)(2,10)(3,11)(4,12)(5,14)(6,15)(7,16)(8,13)(17,50)(18,51)(19,52)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,89)(61,90)(62,91)(63,92)(64,93)(77,108)(78,109)(79,110)(80,111)(81,112)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107), (1,16,3,14)(2,15,4,13)(5,9,7,11)(6,12,8,10)(17,61,23,55)(18,56,24,62)(19,63,25,57)(20,58,26,64)(21,53,27,59)(22,60,28,54)(29,103,35,109)(30,110,36,104)(31,105,37,111)(32,112,38,106)(33,107,39,101)(34,102,40,108)(41,99,47,93)(42,94,48,100)(43,89,49,95)(44,96,50,90)(45,91,51,97)(46,98,52,92)(65,78,71,84)(66,85,72,79)(67,80,73,86)(68,87,74,81)(69,82,75,88)(70,77,76,83), (1,37,33,26,29,18,22)(2,19,27,38,23,30,34)(3,31,39,20,35,24,28)(4,25,21,32,17,36,40)(5,86,82,99,78,91,95)(6,92,100,87,96,79,83)(7,80,88,93,84,97,89)(8,98,94,81,90,85,77)(9,67,75,47,71,51,43)(10,52,48,68,44,72,76)(11,73,69,41,65,45,49)(12,46,42,74,50,66,70)(13,57,53,112,61,104,108)(14,105,101,58,109,62,54)(15,63,59,106,55,110,102)(16,111,107,64,103,56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,14)(6,15)(7,16)(8,13)(17,50)(18,51)(19,52)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,71)(30,72)(31,73)(32,74)(33,75)(34,76)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,89)(61,90)(62,91)(63,92)(64,93)(77,108)(78,109)(79,110)(80,111)(81,112)(82,101)(83,102)(84,103)(85,104)(86,105)(87,106)(88,107), (1,16,3,14)(2,15,4,13)(5,9,7,11)(6,12,8,10)(17,61,23,55)(18,56,24,62)(19,63,25,57)(20,58,26,64)(21,53,27,59)(22,60,28,54)(29,103,35,109)(30,110,36,104)(31,105,37,111)(32,112,38,106)(33,107,39,101)(34,102,40,108)(41,99,47,93)(42,94,48,100)(43,89,49,95)(44,96,50,90)(45,91,51,97)(46,98,52,92)(65,78,71,84)(66,85,72,79)(67,80,73,86)(68,87,74,81)(69,82,75,88)(70,77,76,83), (1,37,33,26,29,18,22)(2,19,27,38,23,30,34)(3,31,39,20,35,24,28)(4,25,21,32,17,36,40)(5,86,82,99,78,91,95)(6,92,100,87,96,79,83)(7,80,88,93,84,97,89)(8,98,94,81,90,85,77)(9,67,75,47,71,51,43)(10,52,48,68,44,72,76)(11,73,69,41,65,45,49)(12,46,42,74,50,66,70)(13,57,53,112,61,104,108)(14,105,101,58,109,62,54)(15,63,59,106,55,110,102)(16,111,107,64,103,56,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,14),(6,15),(7,16),(8,13),(17,50),(18,51),(19,52),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,71),(30,72),(31,73),(32,74),(33,75),(34,76),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(53,94),(54,95),(55,96),(56,97),(57,98),(58,99),(59,100),(60,89),(61,90),(62,91),(63,92),(64,93),(77,108),(78,109),(79,110),(80,111),(81,112),(82,101),(83,102),(84,103),(85,104),(86,105),(87,106),(88,107)], [(1,16,3,14),(2,15,4,13),(5,9,7,11),(6,12,8,10),(17,61,23,55),(18,56,24,62),(19,63,25,57),(20,58,26,64),(21,53,27,59),(22,60,28,54),(29,103,35,109),(30,110,36,104),(31,105,37,111),(32,112,38,106),(33,107,39,101),(34,102,40,108),(41,99,47,93),(42,94,48,100),(43,89,49,95),(44,96,50,90),(45,91,51,97),(46,98,52,92),(65,78,71,84),(66,85,72,79),(67,80,73,86),(68,87,74,81),(69,82,75,88),(70,77,76,83)], [(1,37,33,26,29,18,22),(2,19,27,38,23,30,34),(3,31,39,20,35,24,28),(4,25,21,32,17,36,40),(5,86,82,99,78,91,95),(6,92,100,87,96,79,83),(7,80,88,93,84,97,89),(8,98,94,81,90,85,77),(9,67,75,47,71,51,43),(10,52,48,68,44,72,76),(11,73,69,41,65,45,49),(12,46,42,74,50,66,70),(13,57,53,112,61,104,108),(14,105,101,58,109,62,54),(15,63,59,106,55,110,102),(16,111,107,64,103,56,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112)]])

38 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F6A···6F 7 12A···12L14A14B14C28A28B28C28D
order1222334444446···6712···1214141428282828
size11117722141414147···7614···146666666

38 irreducible representations

dim11111111226666
type++++-+++-
imageC1C2C2C2C3C6C6C6Q8C3×Q8F7C2×F7C2×F7C4.F7
kernelC2×C4.F7C4.F7C2×C7⋊C12C2×C4×C7⋊C3C2×Dic14Dic14C2×Dic7C2×C28C2×C7⋊C3C14C2×C4C4C22C2
# reps14212842241214

Matrix representation of C2×C4.F7 in GL8(𝔽337)

3360000000
0336000000
00100000
00010000
00001000
00000100
00000010
00000001
,
1480000000
336189000000
00320034303340
00303320340034
00303303170340
00030303203434
00303003031734
00030334303017
,
10000000
01000000
0033610000
0033601000
0033600100
0033600010
0033600001
0033600000
,
7281000000
0265000000
0018500185294152
0018518529401520
0014201521851520
0001851521850294
0001850142152152
0018514215200152

G:=sub<GL(8,GF(337))| [336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[148,336,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,0,320,303,303,0,303,0,0,0,0,320,303,303,0,303,0,0,34,34,17,0,0,34,0,0,303,0,0,320,303,303,0,0,34,0,34,34,17,0,0,0,0,34,0,34,34,17],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,336,336,336,336,336,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[72,0,0,0,0,0,0,0,81,265,0,0,0,0,0,0,0,0,185,185,142,0,0,185,0,0,0,185,0,185,185,142,0,0,0,294,152,152,0,152,0,0,185,0,185,185,142,0,0,0,294,152,152,0,152,0,0,0,152,0,0,294,152,152] >;

C2×C4.F7 in GAP, Magma, Sage, TeX

C_2\times C_4.F_7
% in TeX

G:=Group("C2xC4.F7");
// GroupNames label

G:=SmallGroup(336,121);
// by ID

G=gap.SmallGroup(336,121);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-7,144,506,122,10373,887]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^7=1,d^6=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽