Copied to
clipboard

G = Dic7⋊C12order 336 = 24·3·7

The semidirect product of Dic7 and C12 acting via C12/C2=C6

metabelian, supersoluble, monomial

Aliases: Dic7⋊C12, C7⋊C12⋊C4, Dic7⋊C4⋊C3, (C2×C4).1F7, C2.4(C4×F7), (C2×C28).8C6, C14.5(C3×D4), C14.1(C3×Q8), C14.4(C2×C12), C2.1(C4.F7), C22.4(C2×F7), (C2×Dic7).1C6, C2.1(Dic7⋊C6), C71(C3×C4⋊C4), C7⋊C31(C4⋊C4), (C2×C7⋊C3).5D4, (C2×C7⋊C3).1Q8, (C2×C7⋊C12).1C2, (C2×C14).3(C2×C6), (C22×C7⋊C3).3C22, (C2×C4×C7⋊C3).9C2, (C2×C7⋊C3).3(C2×C4), SmallGroup(336,15)

Series: Derived Chief Lower central Upper central

C1C14 — Dic7⋊C12
C1C7C14C2×C14C22×C7⋊C3C2×C7⋊C12 — Dic7⋊C12
C7C14 — Dic7⋊C12
C1C22C2×C4

Generators and relations for Dic7⋊C12
 G = < a,b,c | a14=c12=1, b2=a7, bab-1=a-1, cac-1=a9, cbc-1=a7b >

7C3
2C4
7C4
7C4
14C4
7C6
7C6
7C6
7C2×C4
7C2×C4
7C12
7C2×C6
7C12
14C12
14C12
2Dic7
2C28
7C4⋊C4
7C2×C12
7C2×C12
7C2×C12
2C4×C7⋊C3
2C7⋊C12
7C3×C4⋊C4

Smallest permutation representation of Dic7⋊C12
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 64 8 57)(2 63 9 70)(3 62 10 69)(4 61 11 68)(5 60 12 67)(6 59 13 66)(7 58 14 65)(15 81 22 74)(16 80 23 73)(17 79 24 72)(18 78 25 71)(19 77 26 84)(20 76 27 83)(21 75 28 82)(29 94 36 87)(30 93 37 86)(31 92 38 85)(32 91 39 98)(33 90 40 97)(34 89 41 96)(35 88 42 95)(43 105 50 112)(44 104 51 111)(45 103 52 110)(46 102 53 109)(47 101 54 108)(48 100 55 107)(49 99 56 106)
(1 56 18 38)(2 53 27 39 12 51 19 35 10 43 15 33)(3 50 22 40 9 46 20 32 5 44 26 42)(4 47 17 41 6 55 21 29 14 45 23 37)(7 52 16 30 11 54 24 34 13 48 28 36)(8 49 25 31)(57 106 71 85)(58 103 80 86 68 101 72 96 66 107 82 94)(59 100 75 87 65 110 73 93 61 108 79 89)(60 111 84 88 62 105 74 90 70 109 76 98)(63 102 83 91 67 104 77 95 69 112 81 97)(64 99 78 92)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,64,8,57)(2,63,9,70)(3,62,10,69)(4,61,11,68)(5,60,12,67)(6,59,13,66)(7,58,14,65)(15,81,22,74)(16,80,23,73)(17,79,24,72)(18,78,25,71)(19,77,26,84)(20,76,27,83)(21,75,28,82)(29,94,36,87)(30,93,37,86)(31,92,38,85)(32,91,39,98)(33,90,40,97)(34,89,41,96)(35,88,42,95)(43,105,50,112)(44,104,51,111)(45,103,52,110)(46,102,53,109)(47,101,54,108)(48,100,55,107)(49,99,56,106), (1,56,18,38)(2,53,27,39,12,51,19,35,10,43,15,33)(3,50,22,40,9,46,20,32,5,44,26,42)(4,47,17,41,6,55,21,29,14,45,23,37)(7,52,16,30,11,54,24,34,13,48,28,36)(8,49,25,31)(57,106,71,85)(58,103,80,86,68,101,72,96,66,107,82,94)(59,100,75,87,65,110,73,93,61,108,79,89)(60,111,84,88,62,105,74,90,70,109,76,98)(63,102,83,91,67,104,77,95,69,112,81,97)(64,99,78,92)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,64,8,57)(2,63,9,70)(3,62,10,69)(4,61,11,68)(5,60,12,67)(6,59,13,66)(7,58,14,65)(15,81,22,74)(16,80,23,73)(17,79,24,72)(18,78,25,71)(19,77,26,84)(20,76,27,83)(21,75,28,82)(29,94,36,87)(30,93,37,86)(31,92,38,85)(32,91,39,98)(33,90,40,97)(34,89,41,96)(35,88,42,95)(43,105,50,112)(44,104,51,111)(45,103,52,110)(46,102,53,109)(47,101,54,108)(48,100,55,107)(49,99,56,106), (1,56,18,38)(2,53,27,39,12,51,19,35,10,43,15,33)(3,50,22,40,9,46,20,32,5,44,26,42)(4,47,17,41,6,55,21,29,14,45,23,37)(7,52,16,30,11,54,24,34,13,48,28,36)(8,49,25,31)(57,106,71,85)(58,103,80,86,68,101,72,96,66,107,82,94)(59,100,75,87,65,110,73,93,61,108,79,89)(60,111,84,88,62,105,74,90,70,109,76,98)(63,102,83,91,67,104,77,95,69,112,81,97)(64,99,78,92) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,64,8,57),(2,63,9,70),(3,62,10,69),(4,61,11,68),(5,60,12,67),(6,59,13,66),(7,58,14,65),(15,81,22,74),(16,80,23,73),(17,79,24,72),(18,78,25,71),(19,77,26,84),(20,76,27,83),(21,75,28,82),(29,94,36,87),(30,93,37,86),(31,92,38,85),(32,91,39,98),(33,90,40,97),(34,89,41,96),(35,88,42,95),(43,105,50,112),(44,104,51,111),(45,103,52,110),(46,102,53,109),(47,101,54,108),(48,100,55,107),(49,99,56,106)], [(1,56,18,38),(2,53,27,39,12,51,19,35,10,43,15,33),(3,50,22,40,9,46,20,32,5,44,26,42),(4,47,17,41,6,55,21,29,14,45,23,37),(7,52,16,30,11,54,24,34,13,48,28,36),(8,49,25,31),(57,106,71,85),(58,103,80,86,68,101,72,96,66,107,82,94),(59,100,75,87,65,110,73,93,61,108,79,89),(60,111,84,88,62,105,74,90,70,109,76,98),(63,102,83,91,67,104,77,95,69,112,81,97),(64,99,78,92)]])

38 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F6A···6F 7 12A···12L14A14B14C28A28B28C28D
order1222334444446···6712···1214141428282828
size11117722141414147···7614···146666666

38 irreducible representations

dim11111111222266666
type++++-++-
imageC1C2C2C3C4C6C6C12D4Q8C3×D4C3×Q8F7C2×F7C4.F7C4×F7Dic7⋊C6
kernelDic7⋊C12C2×C7⋊C12C2×C4×C7⋊C3Dic7⋊C4C7⋊C12C2×Dic7C2×C28Dic7C2×C7⋊C3C2×C7⋊C3C14C14C2×C4C22C2C2C2
# reps12124428112211222

Matrix representation of Dic7⋊C12 in GL8(𝔽337)

3360000000
0336000000
0013360000
0010336000
0010033600
0010003360
0010000336
00100000
,
49235000000
235288000000
000266712660181
002660026618171
00026601107171
002662661810710
00266110710071
00110071266710
,
0208000000
1290000000
002318031400314
000230180314314
00023314230157
001800314233140
00232315703140
00230023157314

G:=sub<GL(8,GF(337))| [336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0],[49,235,0,0,0,0,0,0,235,288,0,0,0,0,0,0,0,0,0,266,0,266,266,110,0,0,266,0,266,266,110,0,0,0,71,0,0,181,71,71,0,0,266,266,110,0,0,266,0,0,0,181,71,71,0,71,0,0,181,71,71,0,71,0],[0,129,0,0,0,0,0,0,208,0,0,0,0,0,0,0,0,0,23,0,0,180,23,23,0,0,180,23,23,0,23,0,0,0,314,0,314,314,157,0,0,0,0,180,23,23,0,23,0,0,0,314,0,314,314,157,0,0,314,314,157,0,0,314] >;

Dic7⋊C12 in GAP, Magma, Sage, TeX

{\rm Dic}_7\rtimes C_{12}
% in TeX

G:=Group("Dic7:C12");
// GroupNames label

G:=SmallGroup(336,15);
// by ID

G=gap.SmallGroup(336,15);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,144,313,79,10373,1745]);
// Polycyclic

G:=Group<a,b,c|a^14=c^12=1,b^2=a^7,b*a*b^-1=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^7*b>;
// generators/relations

Export

Subgroup lattice of Dic7⋊C12 in TeX

׿
×
𝔽