direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C4×F7, D14⋊2C12, D7⋊(C2×C12), C28⋊3(C2×C6), (C2×C28)⋊3C6, (C4×D7)⋊5C6, C14⋊1(C2×C12), C7⋊C12⋊3C22, C7⋊1(C22×C12), Dic7⋊3(C2×C6), (C2×Dic7)⋊5C6, D14.4(C2×C6), C2.1(C22×F7), C22.9(C2×F7), C14.2(C22×C6), (C22×D7).2C6, (C2×F7).4C22, (C22×F7).2C2, (C2×C4×D7)⋊C3, (C2×C7⋊C12)⋊5C2, C7⋊C3⋊1(C22×C4), (C4×C7⋊C3)⋊3C22, (C2×C14).8(C2×C6), (C2×C7⋊C3).2C23, (C22×C7⋊C3).8C22, (C2×C4×C7⋊C3)⋊3C2, (C2×C7⋊C3)⋊1(C2×C4), SmallGroup(336,122)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C2×C4×F7 |
Generators and relations for C2×C4×F7
G = < a,b,c,d | a2=b4=c7=d6=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >
Subgroups: 384 in 108 conjugacy classes, 62 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C7, C2×C4, C2×C4, C23, C12, C2×C6, D7, C14, C14, C22×C4, C7⋊C3, C2×C12, C22×C6, Dic7, C28, D14, C2×C14, F7, C2×C7⋊C3, C2×C7⋊C3, C22×C12, C4×D7, C2×Dic7, C2×C28, C22×D7, C7⋊C12, C4×C7⋊C3, C2×F7, C22×C7⋊C3, C2×C4×D7, C4×F7, C2×C7⋊C12, C2×C4×C7⋊C3, C22×F7, C2×C4×F7
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C2×C12, C22×C6, F7, C22×C12, C2×F7, C4×F7, C22×F7, C2×C4×F7
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 50 36 43)(30 51 37 44)(31 52 38 45)(32 53 39 46)(33 54 40 47)(34 55 41 48)(35 56 42 49)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 8)(2 11 3 14 5 13)(4 10 7 12 6 9)(15 22)(16 25 17 28 19 27)(18 24 21 26 20 23)(29 36)(30 39 31 42 33 41)(32 38 35 40 34 37)(43 50)(44 53 45 56 47 55)(46 52 49 54 48 51)
G:=sub<Sym(56)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,8)(2,11,3,14,5,13)(4,10,7,12,6,9)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23)(29,36)(30,39,31,42,33,41)(32,38,35,40,34,37)(43,50)(44,53,45,56,47,55)(46,52,49,54,48,51)>;
G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,50,36,43)(30,51,37,44)(31,52,38,45)(32,53,39,46)(33,54,40,47)(34,55,41,48)(35,56,42,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,8)(2,11,3,14,5,13)(4,10,7,12,6,9)(15,22)(16,25,17,28,19,27)(18,24,21,26,20,23)(29,36)(30,39,31,42,33,41)(32,38,35,40,34,37)(43,50)(44,53,45,56,47,55)(46,52,49,54,48,51) );
G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56)], [(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,50,36,43),(30,51,37,44),(31,52,38,45),(32,53,39,46),(33,54,40,47),(34,55,41,48),(35,56,42,49)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,8),(2,11,3,14,5,13),(4,10,7,12,6,9),(15,22),(16,25,17,28,19,27),(18,24,21,26,20,23),(29,36),(30,39,31,42,33,41),(32,38,35,40,34,37),(43,50),(44,53,45,56,47,55),(46,52,49,54,48,51)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6N | 7 | 12A | ··· | 12P | 14A | 14B | 14C | 28A | 28B | 28C | 28D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 7 | 12 | ··· | 12 | 14 | 14 | 14 | 28 | 28 | 28 | 28 |
size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | ··· | 7 | 6 | 7 | ··· | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C4 | C6 | C6 | C6 | C6 | C12 | F7 | C2×F7 | C2×F7 | C4×F7 |
kernel | C2×C4×F7 | C4×F7 | C2×C7⋊C12 | C2×C4×C7⋊C3 | C22×F7 | C2×C4×D7 | C2×F7 | C4×D7 | C2×Dic7 | C2×C28 | C22×D7 | D14 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 8 | 8 | 2 | 2 | 2 | 16 | 1 | 2 | 1 | 4 |
Matrix representation of C2×C4×F7 ►in GL7(𝔽337)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 |
148 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 189 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 189 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 189 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 189 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 189 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 189 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 336 | 336 | 336 | 336 | 336 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
128 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 |
0 | 0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 336 | 0 |
G:=sub<GL(7,GF(337))| [1,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,336],[148,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189,0,0,0,0,0,0,0,189],[1,0,0,0,0,0,0,0,336,1,0,0,0,0,0,336,0,1,0,0,0,0,336,0,0,1,0,0,0,336,0,0,0,1,0,0,336,0,0,0,0,1,0,336,0,0,0,0,0],[128,0,0,0,0,0,0,0,336,0,0,0,1,0,0,0,0,0,336,1,0,0,0,0,0,0,1,0,0,0,0,336,0,1,0,0,0,0,0,0,1,336,0,0,336,0,0,1,0] >;
C2×C4×F7 in GAP, Magma, Sage, TeX
C_2\times C_4\times F_7
% in TeX
G:=Group("C2xC4xF7");
// GroupNames label
G:=SmallGroup(336,122);
// by ID
G=gap.SmallGroup(336,122);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,-7,122,10373,887]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^7=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations