Copied to
clipboard

G = C2×C7⋊C24order 336 = 24·3·7

Direct product of C2 and C7⋊C24

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C7⋊C24, C14⋊C24, C28.3C12, C7⋊C87C6, C72(C2×C24), (C2×C4).5F7, C4.3(C7⋊C12), (C2×C28).4C6, C4.14(C2×F7), C14.6(C2×C12), (C2×C14).1C12, C28.15(C2×C6), C22.2(C7⋊C12), (C2×C7⋊C8)⋊C3, (C2×C7⋊C3)⋊C8, C7⋊C32(C2×C8), (C4×C7⋊C3).3C4, C2.1(C2×C7⋊C12), (C22×C7⋊C3).1C4, (C4×C7⋊C3).15C22, (C2×C4×C7⋊C3).4C2, (C2×C7⋊C3).5(C2×C4), SmallGroup(336,12)

Series: Derived Chief Lower central Upper central

C1C7 — C2×C7⋊C24
C1C7C14C28C4×C7⋊C3C7⋊C24 — C2×C7⋊C24
C7 — C2×C7⋊C24
C1C2×C4

Generators and relations for C2×C7⋊C24
 G = < a,b,c | a2=b7=c24=1, ab=ba, ac=ca, cbc-1=b3 >

7C3
7C6
7C6
7C6
7C8
7C8
7C12
7C12
7C2×C6
7C2×C8
7C2×C12
7C24
7C24
7C2×C24

Smallest permutation representation of C2×C7⋊C24
On 112 points
Generators in S112
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 57)(24 58)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(40 50)(65 112)(66 89)(67 90)(68 91)(69 92)(70 93)(71 94)(72 95)(73 96)(74 97)(75 98)(76 99)(77 100)(78 101)(79 102)(80 103)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(88 111)
(1 96 112 29 104 37 21)(2 30 22 89 38 97 105)(3 90 106 23 98 31 39)(4 24 40 107 32 91 99)(5 108 100 17 92 25 33)(6 18 34 101 26 109 93)(7 102 94 35 110 19 27)(8 36 28 95 20 103 111)(9 79 71 45 87 53 61)(10 46 62 72 54 80 88)(11 73 65 63 81 47 55)(12 64 56 66 48 74 82)(13 67 83 57 75 41 49)(14 58 50 84 42 68 76)(15 85 77 51 69 59 43)(16 52 44 78 60 86 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(65,112)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111), (1,96,112,29,104,37,21)(2,30,22,89,38,97,105)(3,90,106,23,98,31,39)(4,24,40,107,32,91,99)(5,108,100,17,92,25,33)(6,18,34,101,26,109,93)(7,102,94,35,110,19,27)(8,36,28,95,20,103,111)(9,79,71,45,87,53,61)(10,46,62,72,54,80,88)(11,73,65,63,81,47,55)(12,64,56,66,48,74,82)(13,67,83,57,75,41,49)(14,58,50,84,42,68,76)(15,85,77,51,69,59,43)(16,52,44,78,60,86,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(65,112)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111), (1,96,112,29,104,37,21)(2,30,22,89,38,97,105)(3,90,106,23,98,31,39)(4,24,40,107,32,91,99)(5,108,100,17,92,25,33)(6,18,34,101,26,109,93)(7,102,94,35,110,19,27)(8,36,28,95,20,103,111)(9,79,71,45,87,53,61)(10,46,62,72,54,80,88)(11,73,65,63,81,47,55)(12,64,56,66,48,74,82)(13,67,83,57,75,41,49)(14,58,50,84,42,68,76)(15,85,77,51,69,59,43)(16,52,44,78,60,86,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,57),(24,58),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(40,50),(65,112),(66,89),(67,90),(68,91),(69,92),(70,93),(71,94),(72,95),(73,96),(74,97),(75,98),(76,99),(77,100),(78,101),(79,102),(80,103),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(88,111)], [(1,96,112,29,104,37,21),(2,30,22,89,38,97,105),(3,90,106,23,98,31,39),(4,24,40,107,32,91,99),(5,108,100,17,92,25,33),(6,18,34,101,26,109,93),(7,102,94,35,110,19,27),(8,36,28,95,20,103,111),(9,79,71,45,87,53,61),(10,46,62,72,54,80,88),(11,73,65,63,81,47,55),(12,64,56,66,48,74,82),(13,67,83,57,75,41,49),(14,58,50,84,42,68,76),(15,85,77,51,69,59,43),(16,52,44,78,60,86,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)]])

56 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F 7 8A···8H12A···12H14A14B14C24A···24P28A28B28C28D
order12223344446···678···812···1214141424···2428282828
size11117711117···767···77···76667···76666

56 irreducible representations

dim11111111111166666
type++++-+-
imageC1C2C2C3C4C4C6C6C8C12C12C24F7C7⋊C12C2×F7C7⋊C12C7⋊C24
kernelC2×C7⋊C24C7⋊C24C2×C4×C7⋊C3C2×C7⋊C8C4×C7⋊C3C22×C7⋊C3C7⋊C8C2×C28C2×C7⋊C3C28C2×C14C14C2×C4C4C4C22C2
# reps121222428441611114

Matrix representation of C2×C7⋊C24 in GL7(𝔽337)

336000000
0100000
0010000
0001000
0000100
0000010
0000001
,
1000000
0336336336336336336
0100000
0010000
0001000
0000100
0000010
,
129000000
015215222900152
001520152152229
00771851850185
015201521522290
07718518501850
01850077185185

G:=sub<GL(7,GF(337))| [336,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,336,1,0,0,0,0,0,336,0,1,0,0,0,0,336,0,0,1,0,0,0,336,0,0,0,1,0,0,336,0,0,0,0,1,0,336,0,0,0,0,0],[129,0,0,0,0,0,0,0,152,0,0,152,77,185,0,152,152,77,0,185,0,0,229,0,185,152,185,0,0,0,152,185,152,0,77,0,0,152,0,229,185,185,0,152,229,185,0,0,185] >;

C2×C7⋊C24 in GAP, Magma, Sage, TeX

C_2\times C_7\rtimes C_{24}
% in TeX

G:=Group("C2xC7:C24");
// GroupNames label

G:=SmallGroup(336,12);
// by ID

G=gap.SmallGroup(336,12);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,72,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c|a^2=b^7=c^24=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C2×C7⋊C24 in TeX

׿
×
𝔽