Extensions 1→N→G→Q→1 with N=C2×Dic21 and Q=C2

Direct product G=N×Q with N=C2×Dic21 and Q=C2
dρLabelID
C22×Dic21336C2^2xDic21336,202

Semidirect products G=N:Q with N=C2×Dic21 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic21)⋊1C2 = C2.D84φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):1C2336,100
(C2×Dic21)⋊2C2 = C42.38D4φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):2C2336,105
(C2×Dic21)⋊3C2 = D42D21φ: C2/C1C2 ⊆ Out C2×Dic211684-(C2xDic21):3C2336,199
(C2×Dic21)⋊4C2 = C2×C217D4φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):4C2336,203
(C2×Dic21)⋊5C2 = D14⋊Dic3φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):5C2336,42
(C2×Dic21)⋊6C2 = D6⋊Dic7φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):6C2336,43
(C2×Dic21)⋊7C2 = C2×Dic3×D7φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):7C2336,151
(C2×Dic21)⋊8C2 = C42.C23φ: C2/C1C2 ⊆ Out C2×Dic211684-(C2xDic21):8C2336,153
(C2×Dic21)⋊9C2 = C2×S3×Dic7φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):9C2336,154
(C2×Dic21)⋊10C2 = C2×C21⋊D4φ: C2/C1C2 ⊆ Out C2×Dic21168(C2xDic21):10C2336,157
(C2×Dic21)⋊11C2 = C2×C4×D21φ: trivial image168(C2xDic21):11C2336,195

Non-split extensions G=N.Q with N=C2×Dic21 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic21).1C2 = C42.4Q8φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).1C2336,98
(C2×Dic21).2C2 = C84⋊C4φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).2C2336,99
(C2×Dic21).3C2 = C2×Dic42φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).3C2336,194
(C2×Dic21).4C2 = Dic3×Dic7φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).4C2336,41
(C2×Dic21).5C2 = C42.Q8φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).5C2336,45
(C2×Dic21).6C2 = Dic21⋊C4φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).6C2336,46
(C2×Dic21).7C2 = C14.Dic6φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).7C2336,47
(C2×Dic21).8C2 = C2×C21⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic21336(C2xDic21).8C2336,160
(C2×Dic21).9C2 = C4×Dic21φ: trivial image336(C2xDic21).9C2336,97

׿
×
𝔽