Copied to
clipboard

G = C2.D84order 336 = 24·3·7

2nd central extension by C2 of D84

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D421C4, C6.5D28, C2.2D84, C42.33D4, C14.5D12, C22.6D42, (C2×C28)⋊2S3, (C2×C84)⋊3C2, C72(D6⋊C4), (C2×C4)⋊1D21, (C2×C12)⋊2D7, C6.9(C4×D7), C32(D14⋊C4), C14.9(C4×S3), C2.5(C4×D21), C214(C22⋊C4), C42.18(C2×C4), (C2×C6).24D14, (C2×C14).24D6, (C2×Dic21)⋊1C2, C6.15(C7⋊D4), C2.2(C217D4), C14.15(C3⋊D4), (C2×C42).25C22, (C22×D21).1C2, SmallGroup(336,100)

Series: Derived Chief Lower central Upper central

C1C42 — C2.D84
C1C7C21C42C2×C42C22×D21 — C2.D84
C21C42 — C2.D84
C1C22C2×C4

Generators and relations for C2.D84
 G = < a,b,c | a2=b84=1, c2=a, ab=ba, ac=ca, cbc-1=ab-1 >

Subgroups: 512 in 68 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C7, C2×C4, C2×C4, C23, Dic3, C12, D6, C2×C6, D7, C14, C22⋊C4, C21, C2×Dic3, C2×C12, C22×S3, Dic7, C28, D14, C2×C14, D21, C42, D6⋊C4, C2×Dic7, C2×C28, C22×D7, Dic21, C84, D42, D42, C2×C42, D14⋊C4, C2×Dic21, C2×C84, C22×D21, C2.D84
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, D7, C22⋊C4, C4×S3, D12, C3⋊D4, D14, D21, D6⋊C4, C4×D7, D28, C7⋊D4, D42, D14⋊C4, C4×D21, D84, C217D4, C2.D84

Smallest permutation representation of C2.D84
On 168 points
Generators in S168
(1 123)(2 124)(3 125)(4 126)(5 127)(6 128)(7 129)(8 130)(9 131)(10 132)(11 133)(12 134)(13 135)(14 136)(15 137)(16 138)(17 139)(18 140)(19 141)(20 142)(21 143)(22 144)(23 145)(24 146)(25 147)(26 148)(27 149)(28 150)(29 151)(30 152)(31 153)(32 154)(33 155)(34 156)(35 157)(36 158)(37 159)(38 160)(39 161)(40 162)(41 163)(42 164)(43 165)(44 166)(45 167)(46 168)(47 85)(48 86)(49 87)(50 88)(51 89)(52 90)(53 91)(54 92)(55 93)(56 94)(57 95)(58 96)(59 97)(60 98)(61 99)(62 100)(63 101)(64 102)(65 103)(66 104)(67 105)(68 106)(69 107)(70 108)(71 109)(72 110)(73 111)(74 112)(75 113)(76 114)(77 115)(78 116)(79 117)(80 118)(81 119)(82 120)(83 121)(84 122)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 122 123 84)(2 83 124 121)(3 120 125 82)(4 81 126 119)(5 118 127 80)(6 79 128 117)(7 116 129 78)(8 77 130 115)(9 114 131 76)(10 75 132 113)(11 112 133 74)(12 73 134 111)(13 110 135 72)(14 71 136 109)(15 108 137 70)(16 69 138 107)(17 106 139 68)(18 67 140 105)(19 104 141 66)(20 65 142 103)(21 102 143 64)(22 63 144 101)(23 100 145 62)(24 61 146 99)(25 98 147 60)(26 59 148 97)(27 96 149 58)(28 57 150 95)(29 94 151 56)(30 55 152 93)(31 92 153 54)(32 53 154 91)(33 90 155 52)(34 51 156 89)(35 88 157 50)(36 49 158 87)(37 86 159 48)(38 47 160 85)(39 168 161 46)(40 45 162 167)(41 166 163 44)(42 43 164 165)

G:=sub<Sym(168)| (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,145)(24,146)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,168)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,97)(60,98)(61,99)(62,100)(63,101)(64,102)(65,103)(66,104)(67,105)(68,106)(69,107)(70,108)(71,109)(72,110)(73,111)(74,112)(75,113)(76,114)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,121)(84,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,122,123,84)(2,83,124,121)(3,120,125,82)(4,81,126,119)(5,118,127,80)(6,79,128,117)(7,116,129,78)(8,77,130,115)(9,114,131,76)(10,75,132,113)(11,112,133,74)(12,73,134,111)(13,110,135,72)(14,71,136,109)(15,108,137,70)(16,69,138,107)(17,106,139,68)(18,67,140,105)(19,104,141,66)(20,65,142,103)(21,102,143,64)(22,63,144,101)(23,100,145,62)(24,61,146,99)(25,98,147,60)(26,59,148,97)(27,96,149,58)(28,57,150,95)(29,94,151,56)(30,55,152,93)(31,92,153,54)(32,53,154,91)(33,90,155,52)(34,51,156,89)(35,88,157,50)(36,49,158,87)(37,86,159,48)(38,47,160,85)(39,168,161,46)(40,45,162,167)(41,166,163,44)(42,43,164,165)>;

G:=Group( (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,145)(24,146)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,168)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,97)(60,98)(61,99)(62,100)(63,101)(64,102)(65,103)(66,104)(67,105)(68,106)(69,107)(70,108)(71,109)(72,110)(73,111)(74,112)(75,113)(76,114)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,121)(84,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,122,123,84)(2,83,124,121)(3,120,125,82)(4,81,126,119)(5,118,127,80)(6,79,128,117)(7,116,129,78)(8,77,130,115)(9,114,131,76)(10,75,132,113)(11,112,133,74)(12,73,134,111)(13,110,135,72)(14,71,136,109)(15,108,137,70)(16,69,138,107)(17,106,139,68)(18,67,140,105)(19,104,141,66)(20,65,142,103)(21,102,143,64)(22,63,144,101)(23,100,145,62)(24,61,146,99)(25,98,147,60)(26,59,148,97)(27,96,149,58)(28,57,150,95)(29,94,151,56)(30,55,152,93)(31,92,153,54)(32,53,154,91)(33,90,155,52)(34,51,156,89)(35,88,157,50)(36,49,158,87)(37,86,159,48)(38,47,160,85)(39,168,161,46)(40,45,162,167)(41,166,163,44)(42,43,164,165) );

G=PermutationGroup([[(1,123),(2,124),(3,125),(4,126),(5,127),(6,128),(7,129),(8,130),(9,131),(10,132),(11,133),(12,134),(13,135),(14,136),(15,137),(16,138),(17,139),(18,140),(19,141),(20,142),(21,143),(22,144),(23,145),(24,146),(25,147),(26,148),(27,149),(28,150),(29,151),(30,152),(31,153),(32,154),(33,155),(34,156),(35,157),(36,158),(37,159),(38,160),(39,161),(40,162),(41,163),(42,164),(43,165),(44,166),(45,167),(46,168),(47,85),(48,86),(49,87),(50,88),(51,89),(52,90),(53,91),(54,92),(55,93),(56,94),(57,95),(58,96),(59,97),(60,98),(61,99),(62,100),(63,101),(64,102),(65,103),(66,104),(67,105),(68,106),(69,107),(70,108),(71,109),(72,110),(73,111),(74,112),(75,113),(76,114),(77,115),(78,116),(79,117),(80,118),(81,119),(82,120),(83,121),(84,122)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,122,123,84),(2,83,124,121),(3,120,125,82),(4,81,126,119),(5,118,127,80),(6,79,128,117),(7,116,129,78),(8,77,130,115),(9,114,131,76),(10,75,132,113),(11,112,133,74),(12,73,134,111),(13,110,135,72),(14,71,136,109),(15,108,137,70),(16,69,138,107),(17,106,139,68),(18,67,140,105),(19,104,141,66),(20,65,142,103),(21,102,143,64),(22,63,144,101),(23,100,145,62),(24,61,146,99),(25,98,147,60),(26,59,148,97),(27,96,149,58),(28,57,150,95),(29,94,151,56),(30,55,152,93),(31,92,153,54),(32,53,154,91),(33,90,155,52),(34,51,156,89),(35,88,157,50),(36,49,158,87),(37,86,159,48),(38,47,160,85),(39,168,161,46),(40,45,162,167),(41,166,163,44),(42,43,164,165)]])

90 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D6A6B6C7A7B7C12A12B12C12D14A···14I21A···21F28A···28L42A···42R84A···84X
order122222344446667771212121214···1421···2128···2842···4284···84
size11114242222424222222222222···22···22···22···22···2

90 irreducible representations

dim111112222222222222222
type++++++++++++++
imageC1C2C2C2C4S3D4D6D7C4×S3D12C3⋊D4D14D21C4×D7D28C7⋊D4D42C4×D21D84C217D4
kernelC2.D84C2×Dic21C2×C84C22×D21D42C2×C28C42C2×C14C2×C12C14C14C14C2×C6C2×C4C6C6C6C22C2C2C2
# reps111141213222366666121212

Matrix representation of C2.D84 in GL5(𝔽337)

3360000
01000
00100
0003360
0000336
,
1480000
01771600
032130700
000203286
0008954
,
1890000
01771600
06416000
000203286
000101134

G:=sub<GL(5,GF(337))| [336,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,336,0,0,0,0,0,336],[148,0,0,0,0,0,177,321,0,0,0,16,307,0,0,0,0,0,203,89,0,0,0,286,54],[189,0,0,0,0,0,177,64,0,0,0,16,160,0,0,0,0,0,203,101,0,0,0,286,134] >;

C2.D84 in GAP, Magma, Sage, TeX

C_2.D_{84}
% in TeX

G:=Group("C2.D84");
// GroupNames label

G:=SmallGroup(336,100);
// by ID

G=gap.SmallGroup(336,100);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,121,31,964,10373]);
// Polycyclic

G:=Group<a,b,c|a^2=b^84=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations

׿
×
𝔽