Copied to
clipboard

G = C2×C21⋊D4order 336 = 24·3·7

Direct product of C2 and C21⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C21⋊D4, C421D4, D145D6, D65D14, C42.21C23, Dic219C22, C214(C2×D4), C62(C7⋊D4), C142(C3⋊D4), (C2×C14).16D6, (C2×C6).16D14, (C22×S3)⋊1D7, (C6×D7)⋊5C22, (C22×D7)⋊2S3, (S3×C14)⋊5C22, C22.14(S3×D7), C6.21(C22×D7), (C2×Dic21)⋊10C2, (C2×C42).15C22, C14.21(C22×S3), (C2×C6×D7)⋊1C2, C73(C2×C3⋊D4), C33(C2×C7⋊D4), (S3×C2×C14)⋊1C2, C2.21(C2×S3×D7), SmallGroup(336,157)

Series: Derived Chief Lower central Upper central

C1C42 — C2×C21⋊D4
C1C7C21C42C6×D7C21⋊D4 — C2×C21⋊D4
C21C42 — C2×C21⋊D4
C1C22

Generators and relations for C2×C21⋊D4
 G = < a,b,c,d | a2=b21=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=b13, dcd=c-1 >

Subgroups: 540 in 108 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C7, C2×C4, D4, C23, Dic3, D6, D6, C2×C6, C2×C6, D7, C14, C14, C14, C2×D4, C21, C2×Dic3, C3⋊D4, C22×S3, C22×C6, Dic7, D14, D14, C2×C14, C2×C14, S3×C7, C3×D7, C42, C42, C2×C3⋊D4, C2×Dic7, C7⋊D4, C22×D7, C22×C14, Dic21, C6×D7, C6×D7, S3×C14, S3×C14, C2×C42, C2×C7⋊D4, C21⋊D4, C2×Dic21, C2×C6×D7, S3×C2×C14, C2×C21⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, D7, C2×D4, C3⋊D4, C22×S3, D14, C2×C3⋊D4, C7⋊D4, C22×D7, S3×D7, C2×C7⋊D4, C21⋊D4, C2×S3×D7, C2×C21⋊D4

Smallest permutation representation of C2×C21⋊D4
On 168 points
Generators in S168
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 57)(16 58)(17 59)(18 60)(19 61)(20 62)(21 63)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(85 138)(86 139)(87 140)(88 141)(89 142)(90 143)(91 144)(92 145)(93 146)(94 147)(95 127)(96 128)(97 129)(98 130)(99 131)(100 132)(101 133)(102 134)(103 135)(104 136)(105 137)(106 150)(107 151)(108 152)(109 153)(110 154)(111 155)(112 156)(113 157)(114 158)(115 159)(116 160)(117 161)(118 162)(119 163)(120 164)(121 165)(122 166)(123 167)(124 168)(125 148)(126 149)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 98 33 117)(2 97 34 116)(3 96 35 115)(4 95 36 114)(5 94 37 113)(6 93 38 112)(7 92 39 111)(8 91 40 110)(9 90 41 109)(10 89 42 108)(11 88 22 107)(12 87 23 106)(13 86 24 126)(14 85 25 125)(15 105 26 124)(16 104 27 123)(17 103 28 122)(18 102 29 121)(19 101 30 120)(20 100 31 119)(21 99 32 118)(43 130 81 161)(44 129 82 160)(45 128 83 159)(46 127 84 158)(47 147 64 157)(48 146 65 156)(49 145 66 155)(50 144 67 154)(51 143 68 153)(52 142 69 152)(53 141 70 151)(54 140 71 150)(55 139 72 149)(56 138 73 148)(57 137 74 168)(58 136 75 167)(59 135 76 166)(60 134 77 165)(61 133 78 164)(62 132 79 163)(63 131 80 162)
(1 43)(2 56)(3 48)(4 61)(5 53)(6 45)(7 58)(8 50)(9 63)(10 55)(11 47)(12 60)(13 52)(14 44)(15 57)(16 49)(17 62)(18 54)(19 46)(20 59)(21 51)(22 64)(23 77)(24 69)(25 82)(26 74)(27 66)(28 79)(29 71)(30 84)(31 76)(32 68)(33 81)(34 73)(35 65)(36 78)(37 70)(38 83)(39 75)(40 67)(41 80)(42 72)(85 160)(86 152)(87 165)(88 157)(89 149)(90 162)(91 154)(92 167)(93 159)(94 151)(95 164)(96 156)(97 148)(98 161)(99 153)(100 166)(101 158)(102 150)(103 163)(104 155)(105 168)(106 134)(107 147)(108 139)(109 131)(110 144)(111 136)(112 128)(113 141)(114 133)(115 146)(116 138)(117 130)(118 143)(119 135)(120 127)(121 140)(122 132)(123 145)(124 137)(125 129)(126 142)

G:=sub<Sym(168)| (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,127)(96,128)(97,129)(98,130)(99,131)(100,132)(101,133)(102,134)(103,135)(104,136)(105,137)(106,150)(107,151)(108,152)(109,153)(110,154)(111,155)(112,156)(113,157)(114,158)(115,159)(116,160)(117,161)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,148)(126,149), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,98,33,117)(2,97,34,116)(3,96,35,115)(4,95,36,114)(5,94,37,113)(6,93,38,112)(7,92,39,111)(8,91,40,110)(9,90,41,109)(10,89,42,108)(11,88,22,107)(12,87,23,106)(13,86,24,126)(14,85,25,125)(15,105,26,124)(16,104,27,123)(17,103,28,122)(18,102,29,121)(19,101,30,120)(20,100,31,119)(21,99,32,118)(43,130,81,161)(44,129,82,160)(45,128,83,159)(46,127,84,158)(47,147,64,157)(48,146,65,156)(49,145,66,155)(50,144,67,154)(51,143,68,153)(52,142,69,152)(53,141,70,151)(54,140,71,150)(55,139,72,149)(56,138,73,148)(57,137,74,168)(58,136,75,167)(59,135,76,166)(60,134,77,165)(61,133,78,164)(62,132,79,163)(63,131,80,162), (1,43)(2,56)(3,48)(4,61)(5,53)(6,45)(7,58)(8,50)(9,63)(10,55)(11,47)(12,60)(13,52)(14,44)(15,57)(16,49)(17,62)(18,54)(19,46)(20,59)(21,51)(22,64)(23,77)(24,69)(25,82)(26,74)(27,66)(28,79)(29,71)(30,84)(31,76)(32,68)(33,81)(34,73)(35,65)(36,78)(37,70)(38,83)(39,75)(40,67)(41,80)(42,72)(85,160)(86,152)(87,165)(88,157)(89,149)(90,162)(91,154)(92,167)(93,159)(94,151)(95,164)(96,156)(97,148)(98,161)(99,153)(100,166)(101,158)(102,150)(103,163)(104,155)(105,168)(106,134)(107,147)(108,139)(109,131)(110,144)(111,136)(112,128)(113,141)(114,133)(115,146)(116,138)(117,130)(118,143)(119,135)(120,127)(121,140)(122,132)(123,145)(124,137)(125,129)(126,142)>;

G:=Group( (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,145)(93,146)(94,147)(95,127)(96,128)(97,129)(98,130)(99,131)(100,132)(101,133)(102,134)(103,135)(104,136)(105,137)(106,150)(107,151)(108,152)(109,153)(110,154)(111,155)(112,156)(113,157)(114,158)(115,159)(116,160)(117,161)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,148)(126,149), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,98,33,117)(2,97,34,116)(3,96,35,115)(4,95,36,114)(5,94,37,113)(6,93,38,112)(7,92,39,111)(8,91,40,110)(9,90,41,109)(10,89,42,108)(11,88,22,107)(12,87,23,106)(13,86,24,126)(14,85,25,125)(15,105,26,124)(16,104,27,123)(17,103,28,122)(18,102,29,121)(19,101,30,120)(20,100,31,119)(21,99,32,118)(43,130,81,161)(44,129,82,160)(45,128,83,159)(46,127,84,158)(47,147,64,157)(48,146,65,156)(49,145,66,155)(50,144,67,154)(51,143,68,153)(52,142,69,152)(53,141,70,151)(54,140,71,150)(55,139,72,149)(56,138,73,148)(57,137,74,168)(58,136,75,167)(59,135,76,166)(60,134,77,165)(61,133,78,164)(62,132,79,163)(63,131,80,162), (1,43)(2,56)(3,48)(4,61)(5,53)(6,45)(7,58)(8,50)(9,63)(10,55)(11,47)(12,60)(13,52)(14,44)(15,57)(16,49)(17,62)(18,54)(19,46)(20,59)(21,51)(22,64)(23,77)(24,69)(25,82)(26,74)(27,66)(28,79)(29,71)(30,84)(31,76)(32,68)(33,81)(34,73)(35,65)(36,78)(37,70)(38,83)(39,75)(40,67)(41,80)(42,72)(85,160)(86,152)(87,165)(88,157)(89,149)(90,162)(91,154)(92,167)(93,159)(94,151)(95,164)(96,156)(97,148)(98,161)(99,153)(100,166)(101,158)(102,150)(103,163)(104,155)(105,168)(106,134)(107,147)(108,139)(109,131)(110,144)(111,136)(112,128)(113,141)(114,133)(115,146)(116,138)(117,130)(118,143)(119,135)(120,127)(121,140)(122,132)(123,145)(124,137)(125,129)(126,142) );

G=PermutationGroup([[(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,57),(16,58),(17,59),(18,60),(19,61),(20,62),(21,63),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(85,138),(86,139),(87,140),(88,141),(89,142),(90,143),(91,144),(92,145),(93,146),(94,147),(95,127),(96,128),(97,129),(98,130),(99,131),(100,132),(101,133),(102,134),(103,135),(104,136),(105,137),(106,150),(107,151),(108,152),(109,153),(110,154),(111,155),(112,156),(113,157),(114,158),(115,159),(116,160),(117,161),(118,162),(119,163),(120,164),(121,165),(122,166),(123,167),(124,168),(125,148),(126,149)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,98,33,117),(2,97,34,116),(3,96,35,115),(4,95,36,114),(5,94,37,113),(6,93,38,112),(7,92,39,111),(8,91,40,110),(9,90,41,109),(10,89,42,108),(11,88,22,107),(12,87,23,106),(13,86,24,126),(14,85,25,125),(15,105,26,124),(16,104,27,123),(17,103,28,122),(18,102,29,121),(19,101,30,120),(20,100,31,119),(21,99,32,118),(43,130,81,161),(44,129,82,160),(45,128,83,159),(46,127,84,158),(47,147,64,157),(48,146,65,156),(49,145,66,155),(50,144,67,154),(51,143,68,153),(52,142,69,152),(53,141,70,151),(54,140,71,150),(55,139,72,149),(56,138,73,148),(57,137,74,168),(58,136,75,167),(59,135,76,166),(60,134,77,165),(61,133,78,164),(62,132,79,163),(63,131,80,162)], [(1,43),(2,56),(3,48),(4,61),(5,53),(6,45),(7,58),(8,50),(9,63),(10,55),(11,47),(12,60),(13,52),(14,44),(15,57),(16,49),(17,62),(18,54),(19,46),(20,59),(21,51),(22,64),(23,77),(24,69),(25,82),(26,74),(27,66),(28,79),(29,71),(30,84),(31,76),(32,68),(33,81),(34,73),(35,65),(36,78),(37,70),(38,83),(39,75),(40,67),(41,80),(42,72),(85,160),(86,152),(87,165),(88,157),(89,149),(90,162),(91,154),(92,167),(93,159),(94,151),(95,164),(96,156),(97,148),(98,161),(99,153),(100,166),(101,158),(102,150),(103,163),(104,155),(105,168),(106,134),(107,147),(108,139),(109,131),(110,144),(111,136),(112,128),(113,141),(114,133),(115,146),(116,138),(117,130),(118,143),(119,135),(120,127),(121,140),(122,132),(123,145),(124,137),(125,129),(126,142)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C6D6E6F6G7A7B7C14A···14I14J···14U21A21B21C42A···42I
order12222222344666666677714···1414···1421212142···42
size111166141424242222141414142222···26···64444···4

54 irreducible representations

dim11111222222222444
type+++++++++++++-+
imageC1C2C2C2C2S3D4D6D6D7C3⋊D4D14D14C7⋊D4S3×D7C21⋊D4C2×S3×D7
kernelC2×C21⋊D4C21⋊D4C2×Dic21C2×C6×D7S3×C2×C14C22×D7C42D14C2×C14C22×S3C14D6C2×C6C6C22C2C2
# reps141111221346312363

Matrix representation of C2×C21⋊D4 in GL4(𝔽337) generated by

336000
033600
0010
0001
,
33614300
19422800
001280
00101208
,
3059000
2323200
002302
004107
,
336000
194100
0010
00107336
G:=sub<GL(4,GF(337))| [336,0,0,0,0,336,0,0,0,0,1,0,0,0,0,1],[336,194,0,0,143,228,0,0,0,0,128,101,0,0,0,208],[305,232,0,0,90,32,0,0,0,0,230,4,0,0,2,107],[336,194,0,0,0,1,0,0,0,0,1,107,0,0,0,336] >;

C2×C21⋊D4 in GAP, Magma, Sage, TeX

C_2\times C_{21}\rtimes D_4
% in TeX

G:=Group("C2xC21:D4");
// GroupNames label

G:=SmallGroup(336,157);
// by ID

G=gap.SmallGroup(336,157);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,121,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^21=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=b^13,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽