Copied to
clipboard

G = C2×C4×D21order 336 = 24·3·7

Direct product of C2×C4 and D21

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C4×D21, C288D6, C128D14, C849C22, C22.9D42, C42.29C23, D42.15C22, Dic2110C22, C62(C4×D7), C142(C4×S3), (C2×C84)⋊7C2, (C2×C28)⋊5S3, C424(C2×C4), (C2×C12)⋊5D7, C215(C22×C4), (C2×C6).27D14, (C2×C14).27D6, C2.1(C22×D21), C6.29(C22×D7), (C2×Dic21)⋊11C2, (C2×C42).28C22, C14.29(C22×S3), (C22×D21).4C2, C73(S3×C2×C4), C33(C2×C4×D7), SmallGroup(336,195)

Series: Derived Chief Lower central Upper central

C1C21 — C2×C4×D21
C1C7C21C42D42C22×D21 — C2×C4×D21
C21 — C2×C4×D21
C1C2×C4

Generators and relations for C2×C4×D21
 G = < a,b,c,d | a2=b4=c21=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 640 in 108 conjugacy classes, 51 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C7, C2×C4, C2×C4, C23, Dic3, C12, D6, C2×C6, D7, C14, C14, C22×C4, C21, C4×S3, C2×Dic3, C2×C12, C22×S3, Dic7, C28, D14, C2×C14, D21, C42, C42, S3×C2×C4, C4×D7, C2×Dic7, C2×C28, C22×D7, Dic21, C84, D42, C2×C42, C2×C4×D7, C4×D21, C2×Dic21, C2×C84, C22×D21, C2×C4×D21
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, D7, C22×C4, C4×S3, C22×S3, D14, D21, S3×C2×C4, C4×D7, C22×D7, D42, C2×C4×D7, C4×D21, C22×D21, C2×C4×D21

Smallest permutation representation of C2×C4×D21
On 168 points
Generators in S168
(1 93)(2 94)(3 95)(4 96)(5 97)(6 98)(7 99)(8 100)(9 101)(10 102)(11 103)(12 104)(13 105)(14 85)(15 86)(16 87)(17 88)(18 89)(19 90)(20 91)(21 92)(22 115)(23 116)(24 117)(25 118)(26 119)(27 120)(28 121)(29 122)(30 123)(31 124)(32 125)(33 126)(34 106)(35 107)(36 108)(37 109)(38 110)(39 111)(40 112)(41 113)(42 114)(43 140)(44 141)(45 142)(46 143)(47 144)(48 145)(49 146)(50 147)(51 127)(52 128)(53 129)(54 130)(55 131)(56 132)(57 133)(58 134)(59 135)(60 136)(61 137)(62 138)(63 139)(64 163)(65 164)(66 165)(67 166)(68 167)(69 168)(70 148)(71 149)(72 150)(73 151)(74 152)(75 153)(76 154)(77 155)(78 156)(79 157)(80 158)(81 159)(82 160)(83 161)(84 162)
(1 65 32 61)(2 66 33 62)(3 67 34 63)(4 68 35 43)(5 69 36 44)(6 70 37 45)(7 71 38 46)(8 72 39 47)(9 73 40 48)(10 74 41 49)(11 75 42 50)(12 76 22 51)(13 77 23 52)(14 78 24 53)(15 79 25 54)(16 80 26 55)(17 81 27 56)(18 82 28 57)(19 83 29 58)(20 84 30 59)(21 64 31 60)(85 156 117 129)(86 157 118 130)(87 158 119 131)(88 159 120 132)(89 160 121 133)(90 161 122 134)(91 162 123 135)(92 163 124 136)(93 164 125 137)(94 165 126 138)(95 166 106 139)(96 167 107 140)(97 168 108 141)(98 148 109 142)(99 149 110 143)(100 150 111 144)(101 151 112 145)(102 152 113 146)(103 153 114 147)(104 154 115 127)(105 155 116 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)(21 32)(43 82)(44 81)(45 80)(46 79)(47 78)(48 77)(49 76)(50 75)(51 74)(52 73)(53 72)(54 71)(55 70)(56 69)(57 68)(58 67)(59 66)(60 65)(61 64)(62 84)(63 83)(85 111)(86 110)(87 109)(88 108)(89 107)(90 106)(91 126)(92 125)(93 124)(94 123)(95 122)(96 121)(97 120)(98 119)(99 118)(100 117)(101 116)(102 115)(103 114)(104 113)(105 112)(127 152)(128 151)(129 150)(130 149)(131 148)(132 168)(133 167)(134 166)(135 165)(136 164)(137 163)(138 162)(139 161)(140 160)(141 159)(142 158)(143 157)(144 156)(145 155)(146 154)(147 153)

G:=sub<Sym(168)| (1,93)(2,94)(3,95)(4,96)(5,97)(6,98)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,121)(29,122)(30,123)(31,124)(32,125)(33,126)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,140)(44,141)(45,142)(46,143)(47,144)(48,145)(49,146)(50,147)(51,127)(52,128)(53,129)(54,130)(55,131)(56,132)(57,133)(58,134)(59,135)(60,136)(61,137)(62,138)(63,139)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,159)(82,160)(83,161)(84,162), (1,65,32,61)(2,66,33,62)(3,67,34,63)(4,68,35,43)(5,69,36,44)(6,70,37,45)(7,71,38,46)(8,72,39,47)(9,73,40,48)(10,74,41,49)(11,75,42,50)(12,76,22,51)(13,77,23,52)(14,78,24,53)(15,79,25,54)(16,80,26,55)(17,81,27,56)(18,82,28,57)(19,83,29,58)(20,84,30,59)(21,64,31,60)(85,156,117,129)(86,157,118,130)(87,158,119,131)(88,159,120,132)(89,160,121,133)(90,161,122,134)(91,162,123,135)(92,163,124,136)(93,164,125,137)(94,165,126,138)(95,166,106,139)(96,167,107,140)(97,168,108,141)(98,148,109,142)(99,149,110,143)(100,150,111,144)(101,151,112,145)(102,152,113,146)(103,153,114,147)(104,154,115,127)(105,155,116,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(43,82)(44,81)(45,80)(46,79)(47,78)(48,77)(49,76)(50,75)(51,74)(52,73)(53,72)(54,71)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)(61,64)(62,84)(63,83)(85,111)(86,110)(87,109)(88,108)(89,107)(90,106)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112)(127,152)(128,151)(129,150)(130,149)(131,148)(132,168)(133,167)(134,166)(135,165)(136,164)(137,163)(138,162)(139,161)(140,160)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153)>;

G:=Group( (1,93)(2,94)(3,95)(4,96)(5,97)(6,98)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,115)(23,116)(24,117)(25,118)(26,119)(27,120)(28,121)(29,122)(30,123)(31,124)(32,125)(33,126)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,140)(44,141)(45,142)(46,143)(47,144)(48,145)(49,146)(50,147)(51,127)(52,128)(53,129)(54,130)(55,131)(56,132)(57,133)(58,134)(59,135)(60,136)(61,137)(62,138)(63,139)(64,163)(65,164)(66,165)(67,166)(68,167)(69,168)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,159)(82,160)(83,161)(84,162), (1,65,32,61)(2,66,33,62)(3,67,34,63)(4,68,35,43)(5,69,36,44)(6,70,37,45)(7,71,38,46)(8,72,39,47)(9,73,40,48)(10,74,41,49)(11,75,42,50)(12,76,22,51)(13,77,23,52)(14,78,24,53)(15,79,25,54)(16,80,26,55)(17,81,27,56)(18,82,28,57)(19,83,29,58)(20,84,30,59)(21,64,31,60)(85,156,117,129)(86,157,118,130)(87,158,119,131)(88,159,120,132)(89,160,121,133)(90,161,122,134)(91,162,123,135)(92,163,124,136)(93,164,125,137)(94,165,126,138)(95,166,106,139)(96,167,107,140)(97,168,108,141)(98,148,109,142)(99,149,110,143)(100,150,111,144)(101,151,112,145)(102,152,113,146)(103,153,114,147)(104,154,115,127)(105,155,116,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(43,82)(44,81)(45,80)(46,79)(47,78)(48,77)(49,76)(50,75)(51,74)(52,73)(53,72)(54,71)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)(61,64)(62,84)(63,83)(85,111)(86,110)(87,109)(88,108)(89,107)(90,106)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112)(127,152)(128,151)(129,150)(130,149)(131,148)(132,168)(133,167)(134,166)(135,165)(136,164)(137,163)(138,162)(139,161)(140,160)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153) );

G=PermutationGroup([[(1,93),(2,94),(3,95),(4,96),(5,97),(6,98),(7,99),(8,100),(9,101),(10,102),(11,103),(12,104),(13,105),(14,85),(15,86),(16,87),(17,88),(18,89),(19,90),(20,91),(21,92),(22,115),(23,116),(24,117),(25,118),(26,119),(27,120),(28,121),(29,122),(30,123),(31,124),(32,125),(33,126),(34,106),(35,107),(36,108),(37,109),(38,110),(39,111),(40,112),(41,113),(42,114),(43,140),(44,141),(45,142),(46,143),(47,144),(48,145),(49,146),(50,147),(51,127),(52,128),(53,129),(54,130),(55,131),(56,132),(57,133),(58,134),(59,135),(60,136),(61,137),(62,138),(63,139),(64,163),(65,164),(66,165),(67,166),(68,167),(69,168),(70,148),(71,149),(72,150),(73,151),(74,152),(75,153),(76,154),(77,155),(78,156),(79,157),(80,158),(81,159),(82,160),(83,161),(84,162)], [(1,65,32,61),(2,66,33,62),(3,67,34,63),(4,68,35,43),(5,69,36,44),(6,70,37,45),(7,71,38,46),(8,72,39,47),(9,73,40,48),(10,74,41,49),(11,75,42,50),(12,76,22,51),(13,77,23,52),(14,78,24,53),(15,79,25,54),(16,80,26,55),(17,81,27,56),(18,82,28,57),(19,83,29,58),(20,84,30,59),(21,64,31,60),(85,156,117,129),(86,157,118,130),(87,158,119,131),(88,159,120,132),(89,160,121,133),(90,161,122,134),(91,162,123,135),(92,163,124,136),(93,164,125,137),(94,165,126,138),(95,166,106,139),(96,167,107,140),(97,168,108,141),(98,148,109,142),(99,149,110,143),(100,150,111,144),(101,151,112,145),(102,152,113,146),(103,153,114,147),(104,154,115,127),(105,155,116,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33),(21,32),(43,82),(44,81),(45,80),(46,79),(47,78),(48,77),(49,76),(50,75),(51,74),(52,73),(53,72),(54,71),(55,70),(56,69),(57,68),(58,67),(59,66),(60,65),(61,64),(62,84),(63,83),(85,111),(86,110),(87,109),(88,108),(89,107),(90,106),(91,126),(92,125),(93,124),(94,123),(95,122),(96,121),(97,120),(98,119),(99,118),(100,117),(101,116),(102,115),(103,114),(104,113),(105,112),(127,152),(128,151),(129,150),(130,149),(131,148),(132,168),(133,167),(134,166),(135,165),(136,164),(137,163),(138,162),(139,161),(140,160),(141,159),(142,158),(143,157),(144,156),(145,155),(146,154),(147,153)]])

96 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H6A6B6C7A7B7C12A12B12C12D14A···14I21A···21F28A···28L42A···42R84A···84X
order122222223444444446667771212121214···1421···2128···2842···4284···84
size111121212121211112121212122222222222···22···22···22···22···2

96 irreducible representations

dim111111222222222222
type++++++++++++++
imageC1C2C2C2C2C4S3D6D6D7C4×S3D14D14D21C4×D7D42D42C4×D21
kernelC2×C4×D21C4×D21C2×Dic21C2×C84C22×D21D42C2×C28C28C2×C14C2×C12C14C12C2×C6C2×C4C6C4C22C2
# reps141118121346361212624

Matrix representation of C2×C4×D21 in GL4(𝔽337) generated by

1000
0100
003360
000336
,
189000
018900
001480
000148
,
7611000
11722700
0070323
0014262
,
2263300
7611100
00304110
003333
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,336,0,0,0,0,336],[189,0,0,0,0,189,0,0,0,0,148,0,0,0,0,148],[76,117,0,0,110,227,0,0,0,0,70,14,0,0,323,262],[226,76,0,0,33,111,0,0,0,0,304,33,0,0,110,33] >;

C2×C4×D21 in GAP, Magma, Sage, TeX

C_2\times C_4\times D_{21}
% in TeX

G:=Group("C2xC4xD21");
// GroupNames label

G:=SmallGroup(336,195);
// by ID

G=gap.SmallGroup(336,195);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,50,964,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^21=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽